IACHEC standards

Matteo Guainazzi (ESA)

Astronomical Telescopes, Instruments, and Systems

AstronomicalTelescopes.SPIEDigitalLibrary.org

On the in-flight calibration plans of modern x-ray observatories

Matteo Guainazzi Laurence David Catherine E. Grant Eric Miller Lorenzo Natalucci Jukka Nevalainen Robert Petre Marc Audard

Outline

- Standards that are likely to remain adequate in the future
- Standards that we may need to revise

Standards likely to be adequate in the future

• Good standard candles to in-flight calibrate the LSF/ energy scale at μ -calorimeter resolution at E<2 keV

High-resolution LSF and wavelength scale (soft)

Guainazzi et al., 2015, JATIS, 1(4), 047001

RGS spectra of calibration targets (same y-scale)

Caveats:

- rotational broadening
- orbital broad^{ng}
- thermal broad^{ng}

Safe for *Resolve* (requirement 1 eV)

Unclear for X-IFU (requirement 0.15 eV)

Alternative: ADLeo, *v sin(i)*≤6 km s⁻¹

Standards likely to be adequate in the future

- Good standard candles to in-flight calibrate the LSF/ energy scale at μ -calorimeter resolution at E<2 keV
- Good standard candles to identify/monitor molecular contamination in-flight (1E0102-72, RXJ1856-3754, Abell1795 ...)
- Good standard candles for timing

The "timing lot"

Guainazzi et al., 2016, JAXA-ASTH-SOT-001. Main inputs by Y.Terada (Saitama University) & T.Enoto (Kyoto University)

	Crab	PSR B1509-58	PSR B0540-69	Cen X-3	Vela X-1	PSR B1821-24	burst phenomen
Exposure	100 ks (PV) + <mark>2 x 10 ks</mark>	40 ks (TBD)	50 ks	xx ks (PV Target)	xx ks (PV Target)	(80 ks) optional, not recommended	short bursts from any possible ToOs
Exposure	Absolute Time / Phase Sharp pulse peak is compared with the radio ephemeris	Relative Time Pulse profile and period could be reproduced? (broad profile)	Relative Time Pulse profile and period could be reproduced? (broad profile)	Relative Time Pulse profile and period could be reproduced?	Relative Time Pulse profile and period could be reproduced?	Timing Jitter Each Event broadening of spiky peak is a good marker for the timing jitter	Relative precise time serendipitous bursts in ToO: relative timing phase among instruments
A/I	- SXS grade, dead-time	- Exposure is TBD		- Coordination of SXI modes		(optional)	(optional)
Intensity	1 Crab (~10%	~1 mCrab	~1 mCrab			~0.1 mCrab	N/A
Period	33 ms	151 ms	50.5 ms	3 s	283 s	3 ms	N∤A
SXS	\bigtriangleup	Ø	Ø	0	0	Ø	Ø
SXI				riangle (1/8 mode)	◎ (any mode)		Ø
HXI	Ø	Ø	Ø	0	0		Ø
SGD	◎ (100 ks)	Δ	\bigtriangleup				Ø
Proposed additionally proposed exposure for our timing calibration is shown in red							

Targets

 \bigcirc : mainly used, \circ : used, \triangle : used with an issue to be checked

Standards likely to be adequate in the future

- Good standard candles to in-flight calibrate the LSF/ energy scale at μ -calorimeter resolution at E<2 keV
- Good standard candles to identify/monitor molecular contamination in-flight (1E0102-72, RXJ1856-3754, Abell 1795 ...)
- Good standard candles for timing
- "Fudges happen" (R.Petre) we will continue making use of allegedly smooth continuum sources to correct areas

Latest examples of (area) "fudges happen"

Gonzalez-Riestra, 2017, XMM-CCF-REL-349

Tsujimoto et al., 2018, arXiv:180102104

Energy (keV)

Standards likely to be adequate in the future

- Good standard candles to in-flight calibrate the LSF/ energy scale at μ -calorimeter resolution at E<2 keV
- Good standard candles to identify/monitor molecular contamination in-flight (1E0102-72, RXJ1856-3754, Abell 1795 ...)
- Good standard candles for timing
- "Fudges happen" (R.Petre) we will continue making use of allegedly smooth continuum sources to correct area
- Ground-based calibration will continue to be a key factor

Standards that we may need to revise

• LSF/energy scale at μ -calorimeter resolution for E>2 keV?

SXS LSF/energy scale

ABDor, HR1099

<u>HR1099</u>: rotational broadening 0.85 eV @FeXXV <u>ABDor</u>: thermal broadening only (Drake et al. 2015)

Alternatives?

- XRB: Ionisation status and broadening of Fe line uncertain
- Highly-obscured Be binaries? Uncertainties on the origin of the lines, poor constraints on the broadening by Chandra/ HETG
- <u>Galaxy clusters cores</u>?
 Simple, but dynamical properties still poorly known

Standards that we may need to revise

Hitomi Collaboration, 2016, Nature, 535, 177

Courtesy E.Cucchetti (IRAP) and the X-IFU Team

- LSF/energy scale at μ -calorimeter resolution for E>2 keV?
- How to calibrate 3800 µ-calorimeter's pixels?

In the SXS we planned a ~260 ks pixel-by-pixel scan of Capella

SNRs: energy scale and area

Guainazzi et al., 2015, JATIS, 1(4), 047001

Even larger structures considered for the SXS ...

Guainazzi et al., 2016, JAXA-ASTH-SOT-001. Main inputs by K.Mori (Miyazaki University)

ROSAT/PSPC image of the Cygnus Loop

Ionisation and velocity structure

P.Plucinsky, 11th IACHEC

Hitomi Collaboration, arXiv:1712.02365

1E0201-72 - Chandra/ACIS

Red (0.3-0.5 keV), Green (0.5-0.75 keV) Blue (0.75 – 7.0 keV)

Galaxy clusters: energy scale and area

Guainazzi et al., 2015, JATIS, 1(4), 047001. Main inputs by J.Nevalainen (Tartu University)

On-board calibration sources on the Hitomi/SXS

Eckart et al., 2017, ASTH-SXS-CALDB-GAINPIX

- Calibration pixel: ⁵⁵Fe
- Filter Wheel: ⁵⁵Fe
- Direct modulated X-ray source: Cr-K, Cu-K
- Indirect modulated X-ray source: MXS+AL/Mg targets (unclear if it would be used)

Standards that we may need to revise

- LSF/energy scale at µ-calorimeter resolution for E≥2 keV?
- How to calibrate 3800 µ-calorimeter's pixels?
- How to calibrate R>1000 grating instruments?

Capella (lacking of better alternatives?)

N.Schultz, 13th IACHEC

Alternatives: oGem (longer orbital period), ISM?

Standards that we may need to revise

- LSF/energy scale at µ-calorimeter resolution for E≥2 keV?
- How to calibrate 3800 µ-calorimeter's pixels?
- How to calibrate R>1000 grating instruments?
- Which featureless sources do we need for the future?

Cross-talk area vs. PSF

Smith et al., 2017, XMM-CCF-REL-348

Secondary blazars

Rouco-Escudero et al., in preparation

Sample of 104 BLLac observed by XMM-Newton

(in *Hitomi*: 1ES0033+595; see L.Brenneman's talk)