

Cross-calibrating the XMM EPIC effective areas for a default empirical correction

Cornelia Heinitz¹, Michael Smith², Chris Tenzer¹

 ¹ Institute for Astronomy and Astrophysics Kepler Center for Astro and Particle Physics University of Tübingen, Germany
 ² European Space Astronomy Centre (ESAC), ESA, Madrid, Spain

> IACHEC, Avigliano Umbro 9 April 2018

- **1** Introduction: CORRAREA
- 2 Source Sample
- 3 Automated Steps
- 4 Screening of the observations
 - 4.1 Good-Time-Intervals
 - 4.2 Image Screening & Background Selection
 - 4.3 Pile-Up Check
- 5 Summary & Outlook

1

Introduction: CORRAREA

fluxes taken from: XMM-Newton Serendipitous Source Catalogue (3XMM-DR7)

- → an empirical correction of the EPIC on-axis effective areas by an energy-dependent multiplicative factor, determined by cross-calibration
- → a non-default option since SAS v14.0 (Guainazzi et al., 2014): CORRAREA = extension of the according constituents in the current calibration files

residual ratio

- stacked residual method
- value for each energy bin would be unity if the cross-calibration of the effective areas was consistent
- reference instrument: pn

\rightarrow GOALS:

- make it a default empirical correction soon
- automation
- recalibration and further validation

- Original source selection, screening & stacking: Read et al. (2014)
- XMM-Newton Serendipitous Source Catalogue used (3XMM-DR7)

Selection criteria:

1.) point-like

2.) modes: Full Frame, Large Window, Small Window

- 3.) filters: Thin, Medium, Thick
- 4.) # of counts MOS: >5000 cts (0.2-12 keV) - pn: >13500 cts
- 5.) count rates MOS: <0.7 (FF), <1.5 (LW), <4.5 (SW) - pn: <6 (FF), <0.3 (FFext), <3 (LW), <25 (SW)

6.) near on-axis (boresight-to-source distance <2')

7.) out of the plane of the Galaxy (|galactic latitude|>15deg)

observations with multiple results dismissed (crowded fields)

C. Heinitz | Cross-calibrating the XMM EPIC effective areas for a default empirical correction

MOS1	MOS2	pn	# obs. 3XMM-DR7
LW	LW	FF	29
"	"	LW	50
"	"	SW	8
SW	SW	FF	15
"	"	LW	9
"	"	SW	55
FF	FF	FF	166
"	"	LW	6
FF	LW	FF	3
FF	SW	FF	2
LW	FF	FF	2
LW	SW	FF	2

\rightarrow total: 347 observations

Mainly done via bash, python & idl scripts:

- 1. initial data processing
- 2. event files filtered with a **common GTI** file for each observation
- 3. images for visual screening & background region selection
- 4. source and background **spectra**, as well as the Redistribution Matrix and Ancillary Response Files (RMFs and ARFs)
- 5. **stacking** for each detector:
 - source & background spectra: summing up counts per bin, summing up exposures, exposure-weighting BACKSCAL values
 - exposure-weighted RMFs and ARFs
- 6. phenomenological **reference model** fit to **pn data**:

wabs × [power + power + Gauss + Gauss + Gauss] × edge

3 Automated Steps

7. reference model convolved with the instrument responses of MOS1 and MOS2

egrees of 0.01

0.1

- pn fit: χ^2_{red} is 1.08 for 1888 degrees of reedom (calculated with SAS v13.5 and according calibrations)
- 8. realignment of the residuals to a new, uniform energy grid
- 9. calculation of the residual ratio α

$$\alpha = \frac{data_{i}}{model_{pn} \otimes response_{i}} \times \frac{model_{pn} \otimes response_{pn}}{data_{pn}}$$
i: MOS indices (1, 2)

MOS1 MOS2

pn

3 Automated Steps

10.fitting of the residual ratio

current CORRAREA function:

$$R_i(E) = a_i + a_{pn} + b_i \times e^{-c_i \times e^{-d_i \times E}}$$

- R_i : MOS to pn empirical correction factor <u>alternative</u>:
- *i*: MOS indices (1, 2)
- E: energy
- $a \dots d$: best fit parameters

$$R_i(E) = a_i + a_{pn} + b_i \times \frac{1}{1 + \exp\left(\frac{-E + c_i}{d_i}\right)}$$

3 Automated Steps

10.fitting of the residual ratio

current CORRAREA function:

$$R_i(E) = a_i + a_{pn} + b_i \times e^{-c_i \times e^{-d_i \times E}}$$

 R_i : MOS to pn empirical correction factor **alternation**

- *i*: MOS indices (1, 2)
- E: energy
- *a* ... *d*: best fit parameters

alternative:

$$R_i(E) = a_i + a_{pn} + b_i \times \frac{1}{1 + \exp\left(\frac{-E + c_i}{d_i}\right)}$$

Screening

4.1 Good-Time-Intervals

- previously: GTIs uniformly defined as those bins containing less than 130 (pn) or 40 (MOS) counts per bin
- GTIs now individually defined for each observation:
 - 1. lightcurves with > 10 keV (MOS) or 10-12 keV (pn) are prepared
 - 2. histogramm \rightarrow gaussian threshold at μ + 3 σ

Δ

- 3. maximum signal-to-noise ratio (snr) \rightarrow snr threshold
- 4. the more conservative one of the thresholds is chosen

Images have to be **screened for**:

- crowded fields
- chip gaps & bad CCD columns close to the source
- targets appearing extended or lying within extended emission
- a chip loss of an entire detector chip or quadrant
- maximum source extraction radius

Background selection: FF mode

C. Heinitz | Cross-calibrating the XMM EPIC effective areas for a default empirical correction

Images have to be **screened for**:

- crowded fields
- chip gaps & bad CCD columns close to the source
- targets appearing extended or lying within extended emission
- a chip loss of an entire detector chip or quadrant
- maximum source extraction radius

Background selection: LW mode

C. Heinitz | Cross-calibrating the XMM EPIC effective areas for a default empirical correction

Images have to be **screened for**:

- crowded fields
- chip gaps & bad CCD columns close to the source
- targets appearing extended or lying within extended emission
- a chip loss of an entire detector chip or quadrant
- maximum source extraction radius

Background selection: SW mode

- so far: maximum count rate (as in XMM-Newton Users Handbook v.2.10) given as a source selection criterium to limit pile-up
- more precise method: MOS diagonal events are produced almost exclusively from the pile-up of two single pixel events

- fraction of diagonal events obtained by dividing an image of diagonal events by an image of 'clean' events
- not always a clear center; the maximum value is not necessarily in the center; which value to take as the pile-up limit

- so far: maximum count rate (as in XMM-Newton Users Handbook v.2.10) given as a source selection criterium to limit pile-up
- more precise method: MOS diagonal events are produced almost exclusively from the pile-up of two single pixel events

- fraction of diagonal events obtained by dividing an image of diagonal events by an image of 'clean' events
- not always a clear center; the maximum value is not necessarily in the center; which value to take as the pile-up limit

- the automation to get the residual ratio and the correction function is done to a large degree ✓
- the selection criteria & screening have been revised \checkmark
- 3XMM-DR7 brought up 301 new potential observations ✓
- **update** with SAS v16.1 and according calibration files:
 - initial data reduction \checkmark
 - GTI filtering \checkmark
 - image screening and background region selection (\checkmark)
 - checking for pile-up
 - creating the spectra, stacking them & fitting the stacked spectrum
 - calculating the residual ratio & deciding on a correction function (compare different source extraction radii, pile-up levels, modes, filters)

Thank you!