Gaussian Process Tutorial

David Jones
Duke University and SAMSI

9th April 2018

Acknowledgements: David Stenning (Imperial College London) contributed some of these slides.

Gaussian Processes in Astronomy

Mention of "Gaussian Process" in SAO/NASA ADS Abstract

- Source: http://adsabs.harvard.edu/abstract_service.html

Example: function

Example：no data

Example: function estimation

Example: function estimation

Example: noisy observations

Example: prediction

What is a Gaussian Process?

- A GP on the real line is a random real-valued function $f(t)$, which is completely determined by its mean function $m(t)$ and covariance function $C_{t t^{\prime}}=\operatorname{Cov}\left(f(t), f\left(t^{\prime}\right)\right)$.
- Any finite sample $\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right)$ has a multivariate Gaussian distribution with mean $\vec{\mu}=\left(m\left(t_{1}\right), \ldots, m\left(t_{n}\right)\right)$ and covariance matrix Σ, with $\Sigma_{i j}=C_{t_{i} t_{j}}$
- An excellent reference: Rasmussen and Williams (2006): http://www.gaussianprocess.org/gpml/chapters/

Bivariate Normal Distribution

Left: $\binom{y_{1}}{y_{2}}=\binom{f\left(t_{1}\right)}{f\left(t_{2}\right)} \sim \mathrm{N}\left(\vec{\mu}=\binom{1}{3}, \Sigma=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$
\rightarrow Right: $\binom{y_{1}}{y_{2}}=\binom{f\left(t_{1}\right)}{f\left(t_{2}\right)} \sim \mathrm{N}\left(\vec{\mu}=\binom{1}{3}, \Sigma=\left(\begin{array}{cc}1 & 0.75 \\ 0.75 & 1\end{array}\right)\right)$

Conditional distributions

Conditional distributions

$$
\begin{aligned}
\binom{y_{1}}{y_{2}} & =\binom{f\left(t_{1}\right)}{f\left(t_{2}\right)} \\
y_{2} \mid y_{1}=-1.52 & \sim N\left(-1.2,0.62^{2}\right)
\end{aligned}
$$

Multivariate Normal Distributions

Suppose $\overrightarrow{y_{1}}$ are values we observe, and $\overrightarrow{y_{2}}$ are values we want to predict, then:

$$
\begin{gathered}
\binom{\overrightarrow{y_{1}}}{\overrightarrow{y_{2}}} \sim \mathrm{~N}\left(\binom{\overrightarrow{0}}{\overrightarrow{0}}=,\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right) \\
\overrightarrow{y_{2}} \mid \overrightarrow{y_{1}} \sim \mathrm{~N}\left(\Sigma_{21} \Sigma_{11}^{-1} \overrightarrow{y_{1}}, \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
\end{gathered}
$$

Illustration

- $\binom{y_{1}}{y_{2}}=\binom{f(-5)}{f(-4)} \sim \mathrm{N}\left(\vec{\mu}=\binom{0}{0}, \Sigma=\left(\begin{array}{cc}1 & 0.790 \\ 0.790 & 1\end{array}\right)\right)$
- Applying the conditional Gaussian result

$$
\begin{aligned}
& y_{2} \mid y_{1}=-1.52 \sim N\left(0.790(1)^{-1}(-1.52), 1-0.790(1)^{-1} 0.790\right) \\
& y_{2} \mid y_{1}=-1.52 \sim N\left(-1.2,0.62^{2}\right)
\end{aligned}
$$

Gaussian Process

- Assume $y=f(x)$ is a univariate function of d-dimensional x
- For a zero-mean Gaussian Process (GP), any (finite) collection y_{1}, \ldots, y_{m} corresponding to x_{1}, \ldots, x_{m} is distributed

$$
\vec{y} \sim \mathrm{~N}(\overrightarrow{0}, \Sigma)
$$

where $\Sigma_{i j}=R\left(x_{i}, x_{j}\right)$
$\Rightarrow R\left(x, x^{\prime}\right)$ is a covariance function (i.e. kernel) that we specify.

- A common choice is the squared exponential kernel:

- σ^{2} is a scale factor (all kernels have this term)
- The length-scale, l, controls the "wiggliness" of the function

Gaussian Process

- Assume $y=f(x)$ is a univariate function of d-dimensional x
- For a zero-mean Gaussian Process (GP), any (finite) collection y_{1}, \ldots, y_{m} corresponding to x_{1}, \ldots, x_{m} is distributed

$$
\vec{y} \sim \mathrm{~N}(\overrightarrow{0}, \Sigma)
$$

where $\Sigma_{i j}=R\left(x_{i}, x_{j}\right)$

- $R\left(x, x^{\prime}\right)$ is a covariance function (i.e. kernel) that we specify.
- A common choice is the squared exponential kernel:

$$
R_{\mathrm{SE}}\left(x, x^{\prime}\right)=\sigma^{2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 l^{2}}\right)
$$

- σ^{2} is a scale factor (all kernels have this term)
- The length-scale, l, controls the "wiggliness" of the function

Periodic and Locally Periodic Kernels

- A periodic kernel models functions that repeat (periodically):

$$
R_{\mathrm{Per}}\left(x, x^{\prime}\right)=\sigma^{2} \exp \left(-\frac{2 \sin ^{2}\left(\pi\left|x-x^{\prime}\right| / p\right)}{l_{p}^{2}}\right)
$$

- A locally periodic kernel yields functions with a periodic component that may evolve over time:

$$
R_{\mathrm{LocPer}}\left(x, x^{\prime}\right)=\sigma^{2} \exp \left(-\frac{2 \sin ^{2}\left(\pi\left|x-x^{\prime}\right| / p\right)}{l_{p}^{2}}\right) \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 l_{e}^{2}}\right)
$$

- A good resource: The Kernel Cookbook (by David Duvenaud)

Another View of Kernels

GP Draws: Squared Exponential Kernel

squared exponential with $\sigma^{2}=1$ and $\mathrm{I}=1$

squared exponential with $\sigma^{2}=1$ and $\mathrm{I}=2$

squared exponential with $\sigma^{2}=1$ and $\mathrm{I}=0.5$

Inference with Gaussian Processes

- Let $\overrightarrow{y_{1}}$ be some values we observe and $\overrightarrow{y_{2}}$ are values we want to predict. Then:

$$
\begin{gathered}
\binom{\overrightarrow{y_{1}}}{\overrightarrow{y_{2}}} \sim \mathrm{~N}\left(\binom{\overrightarrow{0}}{\overrightarrow{0}},\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)\right) \\
\overrightarrow{y_{1}} \mid \overrightarrow{y_{2}} \sim \mathrm{~N}\left(R_{11} R_{22}^{-1} \overrightarrow{y_{2}}, R_{11}-R_{12} R_{22}^{-1} R_{21}\right)
\end{gathered}
$$

- Mean for the new points is a weighted average of the observed points
- Mean of a new point approaches value of an observed point as the new point approaches the observed point
- Variance of a new point goes to zero as the new point approaches an observed point

Inference with Gaussian Processes

Observed Data

Conditional GP Draws

What are we actually doing?

- When using GPs, we are specifying a prior on the relationship between t and $f(t)$, instead of some parameters that describe this relationship
- i.e. "nonparametric"
- GPs especially useful for prediction; (maybe) not as useful for making inference about the relationship
- e.g., useful for predicting sunspot cycle; less useful for learning about the cycle

Noisy observations

Gaussian Processes in the case of noisy observations

- Now y_{1}, \ldots, y_{m} corresponding to x_{1}, \ldots, x_{m} is distributed

$$
\vec{y} \sim \mathrm{~N}\left(\overrightarrow{0}, \Sigma+\tau^{2} I_{m}\right)
$$

where $\Sigma_{i j}=R\left(x_{i}, x_{j}\right)$.

- More specifically the model is

$$
\begin{aligned}
\vec{y} & \sim \mathrm{~N}\left(\vec{f}, \tau^{2} I_{m}\right) \\
\vec{f} & \sim \mathrm{~N}(\overrightarrow{0}, \Sigma)
\end{aligned}
$$

where $\vec{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)^{T}$

Hyper-parameters

- For real research problems, we often (always?) lack the information needed to fix the parameters of the covariance function
- Typical solutions:
- Maximum likelihood estimation
- Cross validation
- Specify some prior distributions and do MCMC
- Caveat: C^{-1} is $\mathscr{O}\left(N^{3}\right)$; exploit sparsity if possible

Underlying Model + Correlated Noise

- Image: https://astrobites.org/2014/07/01/beyond-chi-squared-an-introduction-to-correlated-noise/

Toy Example: setup

- Consider the following setup:
- Physical model: $g_{\phi}(t)=a_{1} \sqrt{10^{t}}+a_{2} \sqrt{10^{t}} \exp \left(\frac{-10^{t}}{a_{3}}\right)$
- Physical parameters: $\phi=\left(a_{1}, a_{2}, a_{3}\right)$
- Reality: $a_{1}=1, a_{2}=0.5, a_{3}=2$
- Have 11 observations with correlated noise
- We want to infer a_{1}, a_{2}, and a_{3}

Toy Example: observations

Toy Example: model formulation

Covariance Function (Kernel):

- $R\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\beta\left(t-t^{\prime}\right)^{2}\right)+\delta_{t t^{\prime}} \tau^{2}$
- $\delta_{t t^{\prime}}=1$ if $t=t^{\prime}$ and 0 otherwise

Sampling Model:

- $\vec{y} \sim N\left(g_{\phi}(\vec{t}), \Sigma\right)$
- $\Sigma_{i j}=R\left(t_{i}, t_{j}\right)$
- $\phi=\left(a_{1}, a_{2}, a_{3}\right)$

Priors:

- $\beta \sim$ Exponential (1)
- $\sigma^{2} \sim \operatorname{Inv-Gamma}(5,0.1)$
- $\tau^{2} \sim \operatorname{Inv-Gamma}(5,0.01)$
- Flat priors on a_{1}, a_{2}, and a_{3}

Model Fitting:

- Parameters estimated with one-at-a-time Metropolis MCMC

Toy Example: results

Toy Example: results

Real Example I: Czekala et al. 2015

Figure 11. The K-band SPEX spectrum of Gl 51 (blue) compared with a Phoenix model (red) generated by drawing parameters from the inferred posterior distribution. (bottom) The residual spectrum along with contours representing the distributions of a large number of random draws from the covariance matrix (the shading is representative of the 1,2 , and 3σ spreads of that distribution of draws), as in Fig. 9. Note how the 'outlier' features (Na I at $2.21 \mu \mathrm{~m}$ and Ca I at $2.26 \mu \mathrm{~m}$) are identified and treated by the local covariance kernels.

- Likelihood framework for spectroscopic inference based on synthetic model spectra and GPs
- Addresses mismatches in model spectral line strengths w.r.t. data due to intrinsic model imperfections
- https://arxiv.org/abs/1412.5177

Example II: Mars Rover ChemCam

Artistic rendering of ChemCam LIBS analyses using NASA's Mars Curiosity Rover

Example II: Mars Rover ChemCam

Measured and modeled LIBS spectra of basalt.
General concept: Estimate the settings of a theoretical model's input parameters $\boldsymbol{\theta}$ that are consistent with physical measurements y.
measured spectrum modeled spectrum

Slide courtesy Kary Myers (LANL)

Real Example III: D. Jones, D. Stenning, et al. (under revision)

- Model the relationships between the apparent RV of a star due to a spot and proxies for stellar variability
- Use locally periodic kernel

$$
R_{\text {LocPer }}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\frac{2 \sin ^{2}\left(\pi\left|t-t^{\prime}\right| / p\right)}{l_{p}^{2}}\right) \exp \left(-\frac{\left(t-t^{\prime}\right)^{2}}{2 l_{e}^{2}}\right)
$$

GPs in Python

Packages include:

- scikit-learn
- GPflow
- PyMC3
- George
- ...

Many good tutorials online e.g.

- https://blog.dominodatalab.com/fitting-gaussian-process-models-python/

For more information...

- Rasmussen and Williams (2006):
http://www.gaussianprocess.org/gpml/chapters/
- Contact me:
- dav.jones2000@gmail.com
- dej17@duke.edu

