Gaussian Process Tutorial

David Jones

Duke University and SAMSI

9th April 2018

Gaussian Processes in Astronomy

Mention of "Gaussian Process" in SAO/NASA ADS Abstract

Example: function

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Example: no data

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Example: function estimation

Example: function estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: noisy observations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example: prediction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What is a Gaussian Process?

- ▶ A GP on the real line is a random real-valued function f(t), which is completely determined by its mean function m(t) and covariance function $C_{tt'} = \text{Cov}(f(t), f(t'))$.
- Any finite sample $(f(t_1), \ldots, f(t_n))$ has a multivariate Gaussian distribution with mean $\vec{\mu} = (m(t_1), \ldots, m(t_n))$ and covariance matrix Σ , with $\Sigma_{ij} = C_{t_i t_i}$
- An excellent reference: Rasmussen and Williams (2006): http://www.gaussianprocess.org/gpml/chapters/

Bivariate Normal Distribution

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Conditional distributions

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Conditional distributions

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} f(t_1) \\ f(t_2) \end{pmatrix}$$
$$y_2 | y_1 = -1.52 \sim N(-1.2, 0.62^2)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Suppose $\vec{y_1}$ are values we observe, and $\vec{y_2}$ are values we want to predict, then:

$$\begin{pmatrix} \vec{y_1} \\ \vec{y_2} \end{pmatrix} \sim N\left(\begin{pmatrix} \vec{0} \\ \vec{0} \end{pmatrix} =, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)$$
$$\vec{y_2} \mid \vec{y_1} \sim N\left(\sum_{21} \sum_{11}^{-1} \vec{y_1}, \sum_{22} - \sum_{21} \sum_{11}^{-1} \sum_{12} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration

$$\blacktriangleright \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} f(-5) \\ f(-4) \end{pmatrix} \sim N \left(\vec{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 & 0.790 \\ 0.790 & 1 \end{pmatrix} \right)$$

Applying the conditional Gaussian result

$$y_2|y_1 = -1.52 \sim N(0.790(1)^{-1}(-1.52), 1 - 0.790(1)^{-1}0.790)$$

$$y_2|y_1 = -1.52 \sim N(-1.2, 0.62^2)$$

Gaussian Process

- Assume y = f(x) is a univariate function of d-dimensional x
- For a zero-mean Gaussian Process (GP), any (finite) collection y₁,..., y_m corresponding to x₁,..., x_m is distributed

$$\vec{y} \sim N\left(\vec{0}, \Sigma\right)$$

where $\Sigma_{ij} = R(x_i, x_j)$

▶ R(x,x') is a covariance function (i.e. kernel) that we specify.

A common choice is the squared exponential kernel:

$$R_{\rm SE}(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2l^2}\right)$$

σ² is a scale factor (all kernels have this term)
 The length-scale, *l*, controls the "wiggliness" of the function

Gaussian Process

- Assume y = f(x) is a univariate function of d-dimensional x
- For a zero-mean Gaussian Process (GP), any (finite) collection y₁,..., y_m corresponding to x₁,..., x_m is distributed

$$\vec{y} \sim N\left(\vec{0}, \Sigma\right)$$

where $\Sigma_{ij} = R(x_i, x_j)$

- ▶ R(x,x') is a covariance function (i.e. kernel) that we specify.
 - A common choice is the squared exponential kernel:

$$R_{\rm SE}(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2l^2}\right)$$

σ² is a scale factor (all kernels have this term)
 The length-scale, *l*, controls the "wiggliness" of the function

Periodic and Locally Periodic Kernels

A periodic kernel models functions that repeat (periodically):

$$R_{\text{Per}}(x,x') = \sigma^2 \exp\left(-\frac{2\sin^2\left(\pi |x-x'|/p\right)}{l_p^2}\right)$$

A locally periodic kernel yields functions with a periodic component that may evolve over time:

$$R_{\text{LocPer}}(x,x') = \sigma^2 \exp\left(-\frac{2\sin^2\left(\pi |x-x'|/p\right)}{l_p^2}\right) \exp\left(-\frac{(x-x')^2}{2l_e^2}\right)$$

A good resource: The Kernel Cookbook (by David Duvenaud)

Another View of Kernels

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GP Draws: Squared Exponential Kernel

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Inference with Gaussian Processes

Let $\vec{y_1}$ be some values we observe and $\vec{y_2}$ are values we want to predict. Then:

$$\begin{pmatrix} \vec{y}_1 \\ \vec{y}_2 \end{pmatrix} \sim N \left(\begin{pmatrix} \vec{0} \\ \vec{0} \end{pmatrix}, \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \right)$$

 $\vec{y_1} \mid \vec{y_2} \sim N\left(R_{11}R_{22}^{-1}\vec{y_2}, R_{11} - R_{12}R_{22}^{-1}R_{21}\right)$

- Mean for the new points is a weighted average of the observed points
- Mean of a new point approaches value of an observed point as the new point approaches the observed point
- Variance of a new point goes to zero as the new point approaches an observed point

Inference with Gaussian Processes

୍ବର୍ତ୍

What are we actually doing?

- When using GPs, we are specifying a prior on the relationship between t and f(t), instead of some parameters that describe this relationship
 - ▶ i.e. "nonparametric"
- GPs especially useful for prediction; (maybe) not as useful for making inference about the relationship
 - e.g., useful for predicting sunspot cycle; less useful for learning about the cycle

Noisy observations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Gaussian Processes in the case of noisy observations

▶ Now y₁,..., y_m corresponding to x₁,..., x_m is distributed

$$\vec{y} \sim N\left(\vec{0}, \Sigma + \tau^2 I_m\right)$$

where $\Sigma_{ij} = R(x_i, x_j)$.

More specifically the model is

$$ec{y} \sim \mathrm{N}\left(ec{f}, au^2 I_m
ight)$$
 $ec{f} \sim \mathrm{N}\left(ec{0}, \Sigma
ight)$
where $ec{f} = (f(x_1), \dots, f(x_m))^T$

Hyper-parameters

 For real research problems, we often (always?) lack the information needed to fix the parameters of the covariance function

- Typical solutions:
 - Maximum likelihood estimation
 - Cross validation
 - Specify some prior distributions and do MCMC
- Caveat: C^{-1} is $\mathcal{O}(N^3)$; exploit sparsity if possible

Underlying Model + Correlated Noise

Image: https://astrobites.org/2014/07/01/beyond-chisquared-an-introduction-to-correlated-noise/

э

Toy Example: setup

Consider the following setup:

• Physical model:
$$g_{\phi}(t) = a_1 \sqrt{10^t} + a_2 \sqrt{10^t} \exp\left(\frac{-10^t}{a_3}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Physical parameters:
$$\phi = (a_1, a_2, a_3)$$

• Reality:
$$a_1 = 1$$
, $a_2 = 0.5$, $a_3 = 2$

Toy Example: observations

(日) (四) (日) (日) (日)

æ

Toy Example: model formulation

Covariance Function (Kernel):

$$\blacktriangleright R(t,t') = \sigma^2 \exp\left(-\beta \left(t-t'\right)^2\right) + \delta_{tt'} \tau^2$$

$$\blacktriangleright ~ \delta_{tt'} = 1$$
 if $t = t'$ and 0 otherwise

Sampling Model:

$$\vec{y} \sim N\left(g_{\phi}\left(\vec{t}\right), \Sigma\right)$$

$$\sum_{ij} = R(t_i, t_j)$$

$$\phi = (a_1, a_2, a_3)$$

Priors:

$$\boldsymbol{\flat} \ \boldsymbol{\beta} \sim \text{Exponential}(1)$$

•
$$\sigma^2 \sim \text{Inv-Gamma}(5,0.1)$$

- ▶ $\tau^2 \sim \text{Inv-Gamma}(5, 0.01)$
- Flat priors on a₁, a₂, and a₃

Model Fitting:

Parameters estimated with one-at-a-time Metropolis MCMC

Toy Example: results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Toy Example: results

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへの

Real Example I: Czekala et al. 2015

Figure 11. The K-band SPEX spectrum of Gl 51 (blue) compared with a PHOENIX model (red) generated by drawing parameters from the inferred posterior distribution. (bottom) The residual spectrum along with contours representing the distributions of a large number of random draws from the covariance matrix (the shading is representative of the 1, 2, and 3 σ spreads of that distribution of draws), as in Fig. 9. Note how the 'outlier' features (Na I at 2.21 µm and Ca I at 2.26µm) are identified and treated by the local covariance kernels.

- Likelihood framework for spectroscopic inference based on synthetic model spectra and GPs
- Addresses mismatches in model spectral line strengths w.r.t. data due to intrinsic model imperfections
- https://arxiv.org/abs/1412.5177

Example II: Mars Rover ChemCam

Artistic rendering of ChemCam LIBS analyses using NASA's Mars Curiosity Rover $\langle \Box \rangle + \langle \bigcirc \rangle + \langle \bigcirc \rangle + \langle \bigcirc \rangle$

Example II: Mars Rover ChemCam

Measured and modeled LIBS spectra of basalt.

Slide courtesy Kary Myers (LANL)

Real Example III: D. Jones, D. Stenning, et al. (under revision)

- Model the relationships between the apparent RV of a star due to a spot and proxies for stellar variability
- Use locally periodic kernel

$$R_{\text{LocPer}}(t,t') = \sigma^2 \exp\left(-\frac{2\sin^2\left(\pi \left|t-t'\right|/\rho\right)}{l_{\rho}^2}\right) \exp\left(-\frac{\left(t-t'\right)^2}{2l_{e}^2}\right)$$

GPs in Python

Packages include:

- scikit-learn
- GPflow
- ► PyMC3
- ► George

Many good tutorials online e.g.

https://blog.dominodatalab.com/fitting-gaussian-processmodels-python/

For more information...

 Rasmussen and Williams (2006): http://www.gaussianprocess.org/gpml/chapters/

- Contact me:
 - dav.jones2000@gmail.com
 - ► dej17@duke.edu