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Gaussian Processes in Astronomy

Mention of “Gaussian Process" in SAO/NASA ADS Abstract
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» Source: http://adsabs.harvard.edu/abstract service.html


http://adsabs.harvard.edu/abstract_service.html

Example: function

y =1f(x)

-10

10



Example: no data

y =f{x)




Example: function estimation
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Example: function estimation
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Example: noisy observations
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Example: prediction
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What is a Gaussian Process?

» A GP on the real line is a random real-valued function f(t),
which is completely determined by its mean function m(t) and
covariance function Cy = Cov (f (t),f ().

» Any finite sample (f(t1),...,f (t,)) has a multivariate
Gaussian distribution with mean fi = (m(t),...,m(t,)) and
covariance matrix X, with ¥;; = Ct,.tj

» An excellent reference: Rasmussen and Williams (2006):
http://www.gaussianprocess.org/gpml/chapters/


http://www.gaussianprocess.org/gpml/chapters/

Bivariate Normal Distribution




Conditional distributions
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Conditional distributions

—1.52 ~ N(—1.2,0.62%)
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Multivariate Normal Distributions

Suppose y; are values we observe, and y5 are values we want to

predict, then:
<y1> ~N <0> < le z12 >
)72 0 ’ 221 222

¥ | 4 ~ N (X2 Y, Y00 T 21’11212)



[[lustration
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» Applying the conditional Gaussian result

yaly1 = —1.52 ~ N (0.790(1) ! (—1.52),1 —0.790(1) "10.790)
yalyr = —1.52 ~ N(—1.2,0.62?)



Gaussian Process

» Assume y = f(x) is a univariate function of d-dimensional x

» For a zero-mean Gaussian Process (GP), any (finite) collection
Y1,---,Ym corresponding to xq,...,Xn is distributed

yNN(ﬁ,Z)

where ¥;; = R(x;,X;)



Gaussian Process

» Assume y = f(x) is a univariate function of d-dimensional x

» For a zero-mean Gaussian Process (GP), any (finite) collection
Y1,---,Ym corresponding to xq,...,Xn is distributed

yNN(ﬁ,Z)

where ¥;; = R(x;,X;)
» R(x,x') is a covariance function (i.e. kernel) that we specify.

» A common choice is the squared exponential kernel:

! 2 (X*X,)2
Rsg (x,x) = o°exp Ry

> 62 is a scale factor (all kernels have this term)
» The length-scale, /, controls the “wiggliness” of the function



Periodic and Locally Periodic Kernels

» A periodic kernel models functions that repeat (periodically):

2sin? — !
Rper (X7X/) _ Gzexp (_ sin® (7 |x — x |/p)>

2
Iy

» A ocally periodic kernel yields functions with a periodic
component that may evolve over time:

in? —x 12
RLOCPer (X,X/) = Gzexp ( 251n (ﬂlX X /P)) exp < (X X) )

/S 21

» A good resource: The Kernel Cookbook (by David Duvenaud)


http://www.cs.toronto.edu/~duvenaud/cookbook/index.html

Another View of Kernels
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GP Draws: Squared Exponential Kernel
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Inference with Gaussian Processes

P Let yi be some values we observe and y, are values we want to

predict. Then:
<y1> ~N <0> ( Ri1 Rz )
Vo 0/'\ Ra Rx

Vi | 75 ~ N (Ri1Ry; 5, Ri1— Ri2Ryy Ro1)

» Mean for the new points is a weighted average of the observed
points

» Mean of a new point approaches value of an observed point as
the new point approaches the observed point

» Variance of a new point goes to zero as the new point
approaches an observed point



Inference with Gaussian Processes

Unconditional GP Draws
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What are we actually doing?

» When using GPs, we are specifying a prior on the relationship
between t and f(t), instead of some parameters that describe
this relationship

» i.e. “nonparametric”

» GPs especially useful for prediction; (maybe) not as useful for
making inference about the relationship

» e.g., useful for predicting sunspot cycle; less useful for learning
about the cycle



Noisy observations
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Gaussian Processes in the case of noisy observations

» Now yi,...,Ym corresponding to xi,...,Xn is distributed
yNN(6,2+r2/m)

where ¥ = R (x;, X;).
» More specifically the model is
y~N (f, 12/m>
F~N(0,%)

where = (f(x1),...,f(xm))T



Hyper-parameters

» For real research problems, we often (always?) lack the
information needed to fix the parameters of the covariance
function

» Typical solutions:

» Maximum likelihood estimation
» Cross validation
» Specify some prior distributions and do MCMC

> Caveat: C1is 0 (N3); exploit sparsity if possible



Underlying Model + Correlated Noise

» Image: https://astrobites.org/2014/07/01/beyond-chi-
squared-an-introduction-to-correlated-noise/


https://astrobites.org/2014/07/01/beyond-chi-squared-an-introduction-to-correlated-noise/
https://astrobites.org/2014/07/01/beyond-chi-squared-an-introduction-to-correlated-noise/

Toy Example: setup

» Consider the following setup:
» Physical model: g4(t) = a;v'10t 4+ a,v/10%exp (’130

t
)
» Physical parameters: ¢ = (a1, a,as3)
» Reality: a; =1, ap=0.5, a3 =2
» Have 11 observations with correlated noise

> We want to infer a1, a», and a3



Toy Example: observations
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Toy Example: model formulation
Covariance Function (Kernel):

> R(t,t') = 6%exp (—/3 (t— t’)2) + 872
» 6,y =1if t =t and 0 otherwise
Sampling Model:
> ¥~ N(g(t),T)

> Y =R(t,t)
> ¢ =(a1,a2,a3)
Priors:
» B ~ Exponential (1)
» 02 ~ Inv-Gamma(5,0.1)
» 72 ~ Inv-Gamma(5,0.01)
» Flat priors on ai, a», and a3

Model Fitting:
» Parameters estimated with one-at-a-time Metropolis MCMC



results

Toy Example
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Toy Example: results
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Real Example |: Czekala et al. 2015
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Figure 11. The K-band SPEX spectrum of Gl 51 (blue) compared with a PHOENIX model (red) generated by drawing parameters from
the inferred posterior distribution. (bottorn) The residual spectrum along with contours representing the distributions of a large number
of random draws from the covariance matrix (the shading is representative of the 1, 2, and 3 ¢ spreads of that distribution of draws), as in
Fig. 9. Note how the ‘outlier’ features (Na I at 2.21 um and Ca I at 2.26 um) are identified and treated by the local covariance kernels.

» Likelihood framework for spectroscopic inference based on
synthetic model spectra and GPs

» Addresses mismatches in model spectral line strengths w.r.t.
data due to intrinsic model imperfections

> https://arxiv.org/abs/1412.5177


https://arxiv.org/abs/1412.5177

Example II: Mars Rover ChemCam

Jean-luc LACOUR / 2004 (ca)

Artistic rendering of ChemCam LIBS analyses using NASA’s Mars Curiosity Rover



Example II: Mars Rover ChemCam

Measured and modeled LIBS spectra of basalt.

General concept: Estimate the settings of

a theoretical model’s input parameters Gost1 Measorol
that are consistent with physical —— Modeled
measurements y.
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Slide courtesy Kary Myers (LANL)



Real Example I11: D. Jones, D. Stenning, et al. (under
revision)
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» Model the relationships between the apparent RV of a star due
to a spot and proxies for stellar variability

> Use locally periodic kernel
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GPs in Python

Packages include:
» scikit-learn
» GPflow
> PyMC3
> George
> ...

Many good tutorials online e.g.

» https://blog.dominodatalab.com /fitting-gaussian-process-
models-python/


https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
https://blog.dominodatalab.com/fitting-gaussian-process-models-python/

For more information...

» Rasmussen and Williams (2006):
http://www.gaussianprocess.org/gpml/chapters/

» Contact me:

» dav.jones20000gmail.com
» dej17@duke.edu


http://www.gaussianprocess.org/gpml/chapters/

