
Gaussian Process Tutorial

David Jones

Duke University and SAMSI

9th April 2018

Acknowledgements: David Stenning (Imperial College London) contributed
some of these slides.



Gaussian Processes in Astronomy
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Example: function
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Example: no data



Example: function estimation
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Example: function estimation
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Example: noisy observations
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Example: prediction
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What is a Gaussian Process?

I A GP on the real line is a random real-valued function f (t),
which is completely determined by its mean function m(t) and
covariance function Ctt ′ = Cov(f (t) , f (t ′)).

I Any �nite sample (f (t1) , . . . , f (tn)) has a multivariate
Gaussian distribution with mean ~µ = (m (t1) , . . . ,m (tn)) and
covariance matrix Σ, with Σij = Cti tj

I An excellent reference: Rasmussen and Williams (2006):
http://www.gaussianprocess.org/gpml/chapters/

http://www.gaussianprocess.org/gpml/chapters/


Bivariate Normal Distribution
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Conditional distributions
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Conditional distributions
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Multivariate Normal Distributions

Suppose ~y1 are values we observe, and ~y2 are values we want to
predict, then: (

~y1
~y2

)
∼ N

((
~0
~0

)
=,

(
Σ11 Σ12

Σ21 Σ22

))

~y2 | ~y1 ∼ N
(
Σ21Σ−111~y1,Σ22−Σ21Σ−111 Σ12

)



Illustration
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x
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 f(
x)

I
(
y1
y2

)
=

(
f (−5)

f (−4)

)
∼N

(
~µ =

(
0

0

)
,Σ =

(
1 0.790

0.790 1

))

I Applying the conditional Gaussian result

y2|y1 =−1.52∼ N
(
0.790(1)−1(−1.52),1−0.790(1)−10.790

)
y2|y1 =−1.52∼ N(−1.2,0.622)



Gaussian Process

I Assume y = f (x) is a univariate function of d-dimensional x

I For a zero-mean Gaussian Process (GP), any (�nite) collection
y1, . . . ,ym corresponding to x1, . . . ,xm is distributed

~y ∼ N
(
~0,Σ

)
where Σij = R (xi ,xj)

I R (x ,x ′) is a covariance function (i.e. kernel) that we specify.

I A common choice is the squared exponential kernel:

RSE
(
x ,x ′

)
= σ

2exp

(
− (x−x ′)2

2l2

)

I σ2 is a scale factor (all kernels have this term)
I The length-scale, l, controls the �wiggliness� of the function



Gaussian Process

I Assume y = f (x) is a univariate function of d-dimensional x

I For a zero-mean Gaussian Process (GP), any (�nite) collection
y1, . . . ,ym corresponding to x1, . . . ,xm is distributed

~y ∼ N
(
~0,Σ

)
where Σij = R (xi ,xj)

I R (x ,x ′) is a covariance function (i.e. kernel) that we specify.

I A common choice is the squared exponential kernel:

RSE
(
x ,x ′

)
= σ

2exp

(
− (x−x ′)2

2l2

)

I σ2 is a scale factor (all kernels have this term)
I The length-scale, l, controls the �wiggliness� of the function



Periodic and Locally Periodic Kernels

I A periodic kernel models functions that repeat (periodically):

RPer
(
x ,x ′

)
= σ

2exp

(
−2sin2 (π |x−x ′|/p)

l2p

)

I A locally periodic kernel yields functions with a periodic
component that may evolve over time:

RLocPer
(
x ,x ′

)
= σ

2exp

(
−2sin2 (π |x−x ′|/p)

l2p

)
exp

(
− (x−x ′)2

2l2e

)

I A good resource: The Kernel Cookbook (by David Duvenaud)

http://www.cs.toronto.edu/~duvenaud/cookbook/index.html


Another View of Kernels
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GP Draws: Squared Exponential Kernel
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Inference with Gaussian Processes

I Let ~y1 be some values we observe and ~y2 are values we want to

predict. Then: (
~y1
~y2

)
∼ N

((
~0
~0

)
,

(
R11 R12

R21 R22

))

~y1 | ~y2 ∼ N
(
R11R

−1
22 ~y2, R11−R12R

−1
22 R21

)
I Mean for the new points is a weighted average of the observed

points
I Mean of a new point approaches value of an observed point as

the new point approaches the observed point
I Variance of a new point goes to zero as the new point

approaches an observed point



Inference with Gaussian Processes
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What are we actually doing?

I When using GPs, we are specifying a prior on the relationship

between t and f (t), instead of some parameters that describe
this relationship

I i.e. �nonparametric�

I GPs especially useful for prediction; (maybe) not as useful for
making inference about the relationship

I e.g., useful for predicting sunspot cycle; less useful for learning
about the cycle



Noisy observations
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Gaussian Processes in the case of noisy observations

I Now y1, . . . ,ym corresponding to x1, . . . ,xm is distributed

~y ∼ N
(
~0,Σ + τ

2Im
)

where Σij = R (xi ,xj).

I More speci�cally the model is

~y ∼ N
(
~f ,τ2Im

)
~f ∼ N

(
~0,Σ

)
where ~f = (f (x1), . . . , f (xm))T



Hyper-parameters

I For real research problems, we often (always?) lack the
information needed to �x the parameters of the covariance
function

I Typical solutions:
I Maximum likelihood estimation
I Cross validation
I Specify some prior distributions and do MCMC

I Caveat: C−1 is O
(
N3
)
; exploit sparsity if possible



Underlying Model + Correlated Noise

I Image: https://astrobites.org/2014/07/01/beyond-chi-
squared-an-introduction-to-correlated-noise/

https://astrobites.org/2014/07/01/beyond-chi-squared-an-introduction-to-correlated-noise/
https://astrobites.org/2014/07/01/beyond-chi-squared-an-introduction-to-correlated-noise/


Toy Example: setup

I Consider the following setup:

I Physical model: gφ (t) = a1
√
10t +a2

√
10texp

(
−10t
a3

)
I Physical parameters: φ = (a1,a2,a3)
I Reality: a1 = 1, a2 = 0.5, a3 = 2

I Have 11 observations with correlated noise

I We want to infer a1, a2, and a3



Toy Example: observations
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Toy Example: model formulation
Covariance Function (Kernel):

I R(t, t ′) = σ2exp
(
−β (t− t ′)2

)
+ δtt ′τ

2

I δtt ′ = 1 if t = t ′ and 0 otherwise

Sampling Model:

I ~y ∼ N
(
gφ

(
~t
)
,Σ
)

I Σij = R(ti , tj )
I φ = (a1,a2,a3)

Priors:

I β ∼ Exponential(1)

I σ2 ∼ Inv-Gamma(5,0.1)

I τ2 ∼ Inv-Gamma(5,0.01)

I Flat priors on a1, a2, and a3

Model Fitting:

I Parameters estimated with one-at-a-time Metropolis MCMC



Toy Example: results
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Toy Example: results
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Real Example I: Czekala et al. 2015

I Likelihood framework for spectroscopic inference based on
synthetic model spectra and GPs

I Addresses mismatches in model spectral line strengths w.r.t.
data due to intrinsic model imperfections

I https://arxiv.org/abs/1412.5177

https://arxiv.org/abs/1412.5177


Example II: Mars Rover ChemCam

Artistic rendering of ChemCam LIBS analyses using NASA's Mars Curiosity Rover



Example II: Mars Rover ChemCam

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED !29

And now for computer model calibration

General concept: Estimate the settings of 
a theoretical model’s input parameters θ 
that are consistent with physical 
measurements y. 

!
!

!

y = η(θ) + δ + ε

measured spectrum modeled spectrum

discrepancy term measurement error

Measured and modeled LIBS spectra of basalt.

Slide courtesy Kary Myers (LANL)



Real Example III: D. Jones, D. Stenning, et al. (under
revision)
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I Model the relationships between the apparent RV of a star due
to a spot and proxies for stellar variability

I Use locally periodic kernel

RLocPer
(
t, t ′
)

= σ
2exp

(
−2sin2 (π |t− t ′|/p)

l2p

)
exp

(
−(t− t ′)2

2l2e

)



GPs in Python

Packages include:

I scikit-learn

I GP�ow

I PyMC3

I George

I . . .

Many good tutorials online e.g.

I https://blog.dominodatalab.com/�tting-gaussian-process-
models-python/

https://blog.dominodatalab.com/fitting-gaussian-process-models-python/
https://blog.dominodatalab.com/fitting-gaussian-process-models-python/


For more information...

I Rasmussen and Williams (2006):
http://www.gaussianprocess.org/gpml/chapters/

I Contact me:

I dav.jones2000@gmail.com
I dej17@duke.edu

http://www.gaussianprocess.org/gpml/chapters/

