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Introduction

Transition low-resolution =2 high-resolution
Needs forward-folding
Computationally intensive

Example: RGS properly designed, classical
response matrix needs ~100 Mb-sized storage &
calculation

High-quality spectra can have dozens of free
parameters; error search ....

=>» Need optimal binning & design



Response matrices

* Distinguish two energies:
— E = photon energy (entering the instrument)
— E’ = count energy (as reported by instrument)

S(E") = f R(E',E)f(E)dE
* Usually Peplaced by summation:
* 5, =2R;F



Energy bins

Bins have different properties:
Lower limit energy E;

Upper limit energy E,;

Bin centre E; =7 (Ey; + E;)

Bin width AE; = E,, — E;;
Photon Flux F; (photons/s/bin)



How to evaluate the bin flux Fj?

1) Bin center value: F; = f(E;) AE,
Nice for continua 2
2) Integral over bin:Fi= [ f(E)dE

Nice for narrow lines (naEH”ower than bin
width)

Not trivial, which option to choose?



Tacitly assumed....

Most analysis: tacitly assume all photons @ bin centre E,
What if line at bin boundary?

Line centre determined with accuracy o/VN

FWHM = 2.350 for Gaussian, N = number of counts in line

Example: CCD with 50 eV resolution, 10 eV model bins, line
400 counts: = line centre determined with 50/2.35/v400 =1
eV accuracy = line @ bin boundary off by 5 eV or 5 sigma
significance!

=» Solution: increase number of bins....

But what if you study Capella?



Example

LETGS Capella spectrum

Range 1-175 A

"WHM 0.040-0.076 A

85 ks obs: 40 000 counts in Fe XVII 15 A line
Required model bin width o/VN = 0.00014 A
= 278 bins per resolution element

= 1.2 x 106 bins over 1-175 A range




How to improve on this

1. Resolution usually not constant over range,
use resolution-dependent binning

2. Highest resolution only needed near high flux
/ strong lines: flux-dependent binning

3. Revisit way spectra are calculated: not only
account for number of photons within bin,
but also their average energy
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What test to use?

 Comparing two distributions (spectra):

e X2-test has difficulties for small numbers of
counts

e Use here Kolmogorov-Smirnov test (uses
maximum deviation between two cumulative
distribution functions)



Test criterium:

G,: cumulative pdf of true distribution
G,: cumulative pdf of approximation
Choose rejection criterion ¢ such that:
Gylcy)=1-a (e.g.a=0.025)
Gy(cy,)=1-ka (e.g.k=2)



Analytical approximation

Use that G, is close to G, in the tail, such that:
Glc,) =1-a
Gys(c, —A) =1—=koa (shiftA,)

For a=0.025, k=2: \,=0.122 (only weakly
dependent on a)

A=d__/VN

d .., = max difference between both cdfs

N = number counts or photons



Flux distribution within bin: order O, 1
or 2 approximations

fo(E) = true distribution
f, o= N 6(E-E;) with E, bin %entre
f, 1 =N O6(E-E,) with E f f(E)EdE

Ey;
+ f,,= N exp[(E-E,)%/27%)] with

E,;
7’ = [ F(EXE-E,)%dE
E.



Comparing distributions in practice

* Take “true” line @bin boundary E;, distribution f,

* Take “normal” line @ bin centre approximation
for 7, , (=f, shifted by -AE;/2)

* Convolve both with instrument (Gaussian, width
o) and determine cumulative cdf; calculate d__,

Energy 2



Extending to full spectra

Above formalism for narrow lines (with
Gaussian instrumental broadening)

Full spectrum in resolution element r written
asS. =2 wF

In general /wa <> w,

=» errorin S, in broadband-spectrum smaller
than error if all flux in a line

= use dmax = max\ Ny Dy
r



Extending to full spectra Il

For total of R resolution elements:
Gylc,)f=1—-a

G,(c, ) =1-ka

(this makes use of distribution of maximum of
a set of R variables)



Back to approximations order O, 1, 2

* Can be shown that
* N, <2.1289 A\, N2
e A, <2.4418 A, /2 NY/4
* A, <2.2875 N\, /3N1/6



Model bin size
(result of Monte Carlo calculations)

A

FwaM (. y), (17)

with
0.5707 1.0

order0 : y=—/—(1+—). (18)
1.404 18

order 1 ) = 7 (1 - ?), (19)
1.569 1.14

order2 : y= I (1 + xlT) (20)

where

order0 : x=N;(1+031nR), (21)

orderl : x=N;(1+0.1lnR), (22)

order2 : x=N;(1+0.6lnR). (23)
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Effective area curvature

A(E)=AE)+AENE-E)+.... (24)
l A
€max = E(AE)‘A"(E]')/A(E]'),

Taking several steps in between (see paper):

A dmE, E i
Fvent - Y (qma) mam N Co
A 1 -

FWHM  1/w; + 1/w,



Optimal binning

* From order O to order 1 improvement order of
magnitude

* From order 1 to order 2 only slight
improvement at lot of computational expense

» =» choose order 1 as best option



Consequence for response design

If response matrix is R;; with i observed count
energy bin & j photon energy bin:

Classical New term:
Response response
matrix derivative

5 =Fj +(Ea,j_ EJ) F,

with the prime indicating differentiation with
respect to photon energy (second index)

S, is count spectrum, F; incoming photon spectrum



Data binning: Shannon theorem

The Shannon (1949) sampling theorem states the following: Let
f(x) be a continuous signal. Let g(w) be its Fourier transform,

given by
o(w) = f F(x)e' X dx. (32)

If g(w) = 0 for all |w| > W for a given frequency W, then f(x) 1s
band-limited. and in that case Shannon has shown that

sin t(x/A — n)

O =f@= ) o) A (33)

n=—oo



Integrated Shannon theorem

oo

F(mA) = % Z f(nA){ + Si[m(m —n)]}

n=—oo

X-ray spectra usually given as
histograms, so need to use integrated
form of Shannon theorem: use
cumulative distribution at bin
boundaries as only info available
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Analytical approximation data bin size A

1 if x < 2.110:
= 36
FWHM | 0.08+7.0/x+18/x* (36)
if x> 2.119,
1+59/x
with
x= In[N,(1 + 0.201nR)]. G7)

N,: number of counts in resolution element considered
R: total number of resolution elements in the spectrum
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Fig. 3. Optimal bin size A for data binning with a Gaussian Isf, as a func-
tion of the number of counts per resolution element N, . Dotted curve:
analytical approximation using Sect. A.3; stars: results of Monte Carlo
calculation; solid line: our finally adopted bin size Eq. (36), based on a
fit to our Monte Carlo results for large values of N, dashed line: com-
monly adopted bin size 1/3 FWHM.



Example: Capella LETGS spectrum

85 ks Chandra LETGS observation

Range 0.86 — 175.55 A

Resolution 0.040 — 0.076 A

Strongest line (Fe XVII) has 15000 counts



Example: Capella (continued)

Binning | Data Model Resp.
bins bins elements

8.52x10% 1.26x10° 1.01x107 Constant bin size (20 mA data, 0,14 mA

model)
6.20x103 9.14x10> 7.31x10° Bin size follows resolution AE
C 5.12x10%® 1.23x10° 9.84x10> Bin size follows resolution AE & N;
photons @ bin centre E,
D 5.12x10% 8.21x10® 6.57x10* Bin size follows resolution AE & N;

photons @ average energy E,



Appendix B.1: Creating the data bins

Given an observed spectrum obtained by some instrument, the

following steps should be performed to generate an optimally
binned spectrum.

1.

o

Determine for each original data channel i the nominal en-
ergy Ej, defined as the energy for which the response at
channel i reaches its maximum value. In most cases, this 1s
the nominal channel energy

. Determine for each data ghannel i the limiting ponts (i1, i2)

for the FWHM 1n such a way that R o = 0.5R; jo for all
il < k < i2, while the range of (i1, i2) 1s as broad as possible.
By (linear) interpolation, determine for each data channel the
points (fractional channel numbers) ¢l and ¢2 near il and i2
where the response 1s actually half its maximum value. By
virtue of the previous step, the absolute difference |c1 — 71|
and |¢2 — i2| never can exceed 1.

. Determune for each data channel i the FWHM ¢; in units of

channels, by calculating ¢2 — ¢1. Assure that ¢; 1s at least 1.

. Determine for each original data channel i the FWHM in en-

ergy units (e.g. in keV). Call this W;. This and the previous
steps may of course also be performed directly using instru-
ment calibration data.

. Determine the number of resolution elements R by the fol-

lowing approximation:

R=) — (B.1)



7. Determune for each bin the effective number of events N,
from the following expressions:

1241

C, = Z C;. (B.2)
k=il-1
N, 12+1

hy = > Repl ). Rip. (B3)
k=1 k=11-1

N, = GC,h,. (B.4)

In the above, C; 1s the number of observed counts in channel
k., and N, 1s the total number of channels. Take care that in
the summations il — 1 and i2 + 1 are not out of their valid
range (1, N.). If for some reason there is not a first-order ap-
proximation available for the response matnx R; ; then one
might simply approximate A, from e.g. the Gaussian approx-
imation, namely 2, = 1.314; cf. Sect. 5.4. This 1s justified
since the optimal bin size 1s not a strong function of N, ; cf.
Fig. 3. Even a factor of two error 1n N, 1n most cases does

not affect the optimal binning too much.
8. Using (36), determine for each data channel the optimal data

bin size 1n terms of the FWHM. The true bin size b; in terms
of number of data channels is obtained by multiplying this by
¢; calculated above during step 4. Make b; an integer number
by 1gnoning all decimals (rounding it to below), but take care
that b; 1s at least 1.



9. Itis now time to merge the data channels into bins. In a loop
over all data channels, start with the first data channel. Name
the current channel i. Take in prnciple all channels £ from
channel i to i + b; — 1 together. However, check that the bin
size does not decrease significantly over the rebinning range.
In order to do that check, determine for all X between i and
i + b; — 1 the mmimum a; of X + b;. Extend the summation
only from channel i to @; — 1. In the next step of the merging,
a; becomes the new starting value i. The process 1s finished
when a; exceeds N,.



Appendix B.2: Creating the model bins

After having created the data bins, it 1s possible to generate the
model energy bins. Some of the information obtained from the
previous steps that created the data bins 1s needed.

ro

The following steps need to be taken:

. Sort the FWHM of the data bins in energy units (W;) as a

function of the comresponding energies E p. Use this amray to
interpolate any true FWHM later. Also use the corresponding
values of N, derived during that same stage. Alternatively,
one may use directly the FWHM as obtained from calibration
files.

. Choose an appropriate start and end energy, e.g. the nominal

lower and upper energy of the first and last data bin with
an offset of a few FWHMs (for a Gaussian, about 3 FWHM
1s sufficient). In the case of a Isf with broad wings (like the
scattering due to the RGS gratings), it may be necessary to
take an even broader energy range.

. In a loop over all energies, as determined in the previous

steps, calculate the bin size 1n units of the FWHM using (19).

. Also, determine the effective area factor glﬁ—i for each en-

ergy; one may do that using a linear approximation.

. For the same energies, determine the necessary bin width in

vnits of the FWHM using eqn. (31). Combining this with
the FWHMs determined above gives for these energies the
optimal model bin size AE 1n keV.



6. Now the final energy grid can be created. Start at the lowest
energy E; ;, and interpolate in the AE table the appropnate
AE(E, ) value for the current energy. The upper bin bound-
ary E,; of the first bin 1s then simply E; ; + AE(E; ).

7. Using the recursive scheme E,; = E;; 1, Ey; = Ey; +
AE(E, ;) determine all bin boundaries until the maximum
energy has been reached. The bin centres are simply defined
as Ej = O.S(El.j + Ez'j).

8. Finally, if there are any sharp edges in the effective area of
the instrument, it 1s necessary to add these edges to the list
of bin boundaries. All edges should coincide with bin bound-
aries.



Final words

Can use different binning for different
components of the matrix:

Example: CCD spectrum
— Diagonal needs fine binning but is narrow

— Partial events tail is broad but coarse binning
sufficient

This can save a lot of memory (& computing
timel)

All implemented in SPEX, now the others ...
Spread the news!



Part 2: Cstat



Why use C-stat?

* Classical y? fitting drawbacks, in particular for
low # counts

e Bias in flux, even for high counts ~ 1 count
(Mighell 1999)

* Rebinning to >25 counts/bin may wash out
spectral details



What is Cstat?

* s.model in bin i (model for
source+background)

* N. counts (source + background) in bin i

e C=25[s-N + N In(N/s)]



Criticism on Cstat

* Nousek & Shue (1989): The principal
disadvantage of the C statistic is that there is no
value corresponding to the reduced 32 value with
which we can measure the goodness of the fit.

* Humphrey et al. (2009): Since the absolute value
of the C-statistic cannot be directly interpreted as
a goodness-of-fit indicator observers typically
prefer instead to minimize the better-known 2 fit
statistic.



Cstat Is a statistic

e C=25[s-N + N In(N/s)]

* Cis a statistic: given model s, N. is Poissonian
distributed with mean s, so the expected
value, variance etc. of C can be determined!

* Done in Kaastra (2017), gives numerical
parameterization of expected value and
variance of C



Contribution per bin to Cstat

1.5

0.5
T

T IIIIIIII

T IIIIIIII

— Mean
— - —-—-R.MS.

—
— Tl —‘1 Ll

L1 lllLllI

T IIIIIIII

T IIIII"I

11 IIlllII

T IIIIIIII

1 lIIIIIII

T LI IIIIII

1 1 IIIIIII

T mTrrrrn

1 L L1l

o
107

10-¢

10-5

10—

10-3

u

0.01

0.1

1

10

100

41



Counts s-' keV-!
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On proper use of Cstat
(and no use of Wstat)



Standard model

Blackbody spectrum (SPEX: bb)

Galactic absorption (SPEX: hot, with T=0.5 eV
fixed (neutral) and Lodders et al. abundances)

Fudge factor for individual spectra (SPEX:
knak, i.e. piecewise multiplication with local
power law, prescribed at grid of A, with
correction factors f, interpolated with
powerlaws)

Choose spacing of 2 A for A, starting at 15 A



LETGS fit parameters

Fit to 15-80 A range

C-stat = 19172 (expected 18839 + 193)

BB norm =0.228 £ 0.005 [adopt 0.228]

BB kT =62.3 £0.2 [adopt 62.3]

NH = 0.984 +0.014 x 10%* m~? [adopt 0.985]



Binning issues

 Some data showed unexpected behavior:

Ratio
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Deviant spectrum

Low spectrum at 17 A, with relatively high subtracted background

Observed spectrum
data/rgs/P0201590101R1rev0798 bin size 10 (0.1 &)

SPEX Version 3.04.00 Mon 5 Feb 2018 16:04:42
; ; ; ; : ; ; ; ; : ; ; ; ;

40

30
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Counts

17 18 19 20
Wavelength (&)



Fudge factor depends on bin size

(multiples of 0.01 A)

17 A flux (2 A spaced knak grid)
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What is going on?

Issues with fitting method

x? fitting known to cause bias, so used already
cstat

However, for cstat method Y (source+background
model) needed

For RGS spectra (& many other instruments)

measured background (scaled counts) used
instead

For source < background, this gives bias in
weights



Binning: factor 2 (0.02 A) — Model for
RXJ 1856 — subtracted background

o asg2.gdp | | R I o o
Strong (super)Poissonian excesses
1 (11 counts, mean in this band 4.5 counts)

L
16 16.5 17 17.5 18 18.5 19
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2{!7, + tb)
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Wstat

N
W =2 Zt,rng R [t_, S tb)f.‘ — S In (t,m,- RS taf,;) — B;1n (tbf,;) — S-,,(]. — In S,) — B; (1 — ]_IIB,,)

i—=1

_ 5i+B; —(t, + tp)m; +d;

fi 2ty + tp)

di = \/[(ts +to)mi — S; — Bi]? + 4(ts + ) Bims



s Wstat the solution?

In XSPEC, when CSTAT is used and data &
background is Poissonian, they use WSTAT
instead (but call it cstat...)

For full definition, see WSTAT

W determined as maximum likelihood estimate
from background & source (that order)

Background estimate depends on source model,
so during fit (adjusting source model), the
accounted background changes



Is Wstat the solution? ||

* For low count rates, this gives problems:

 XSPEC manual: In practice, it works well for
many cases but for weak sources can generate
an obviously wrong best fit. It is not clear why
this happens although binning to ensure that
every bin contains at least one count often
seems to fix the problem.

* This binning is undesired!



Alternative: make model for
background

Method chosen: Wiener filtering (Numerical
Recipes)

1.

o A WD

Make FFT of background spectrum
Determine noise level N? at high frequency
Make crude model for “true” signal §°
Filter = S° / (5% + N?)

Multiply FFT by filter

Transform back



Pros and contras

* Pro:
— Average background level preserved
— Smooth background, reduces noise significantly

e Contra:

— Needs to extend spectrum with “mean” value to
power of 2 number of bins

— May cause small deviations at edges spectrum
— FFT model not always “automatically” to obtain



Example ffts

fft.qdp
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Old & new filtered background

backsmooth.qdp
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Comparison methods

Cstat (Model bg)

Statistic 1188
Dof/range 1102 1136+48
# evaluations 3084 2888

F (27 A) 0.90+0.05 0.93+0.04
F(37A) 0.96+0.06  1.03+0.06

1154
1102

1161
1135+48
3527

0.52(-0.18,+0.09)) 0.50+0.10

0.92+0.04

0.93+0.04

0.97(-0.03,+0.14)) 1.02+0.06

* y? & Cstat with data bg:
=>» bias

* Wstat: unstable,
asymmetric errors, 4 x
more model evaluations;

bias?

Fudge factor
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Fudge factor
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