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Introduction

• Transition low-resolution è high-resolution
• Needs forward-folding
• Computationally intensive
• Example: RGS properly designed, classical 

response matrix needs ~100 Mb-sized storage & 
calculation

• High-quality spectra can have dozens of free 
parameters; error search ….

• è Need optimal binning & design



Response matrices

• Distinguish two energies:
– E = photon energy (entering the instrument)
– E’ = count energy (as reported by instrument)

•

• Usually replaced by summation:
• Si = Σ RijFj

S(E ') = R(
0

∞

∫ E ',E) f (E)dE



Energy bins

• Bins have different properties:

• Lower limit energy E1j

• Upper limit energy E2j

• Bin centre Ej = ½ (E1j + E2j)

• Bin width ΔEj = E2j – E1j

• Photon Flux Fj (photons/s/bin)



How to evaluate the bin flux Fj?

• 1) Bin center value: Fj = f(Ej) ΔEj

• Nice for continua
• 2) Integral over bin:   
• Nice for narrow lines (narrower than bin 

width)
• Not trivial, which option to choose?

Fj = f (E)dE
E1 j

E2 j

∫



Tacitly assumed….

• Most analysis: tacitly assume all photons @ bin centre Ej

• What if line at bin boundary?
• Line centre determined with accuracy σ/√N
• FWHM = 2.35σ for Gaussian, N = number of counts in line
• Example: CCD with 50 eV resolution, 10 eV model bins, line 

400 counts: è line centre determined with 50/2.35/√400 = 1 
eV accuracy è line @ bin boundary off by 5 eV or 5 sigma 
significance!

• è Solution: increase number of bins….
• But what if you study Capella?



Example

• LETGS Capella spectrum
• Range 1-175 Å
• FWHM 0.040-0.076 Å
• 85 ks obs: 40 000 counts in Fe XVII 15 Å line
• Required model bin width σ/√N = 0.00014 Å
• = 278 bins per resolution element
• = 1.2 x 106 bins over 1-175 Å range



How to improve on this

1. Resolution usually not constant over range, 
use resolution-dependent binning

2. Highest resolution only needed near high flux 
/ strong lines: flux-dependent binning

3. Revisit way spectra are calculated: not only 
account for number of photons within bin, 
but also their average energy



How to test a model

(Approximation to g0)

(Any alternative model)

(True model)

2.5%

5%



What test to use?

• Comparing two distributions (spectra):
• Χ2-test has difficulties for small numbers of 

counts
• Use here Kolmogorov-Smirnov test (uses 

maximum deviation between two cumulative 
distribution functions)



Test criterium:

• G0: cumulative pdf of true distribution
• G1: cumulative pdf of approximation
• Choose rejection criterion cα such that:
• G0(cα) = 1 – α       (e.g. α = 0.025)
• G1(cα) = 1 – kα     (e.g. k = 2)



Analytical approximation

• Use that G1 is close to G0 in the tail, such that:
• GKS(cα) = 1 – α
• GKS(cα – λk) = 1 – kα (shift λk)
• For α=0.025, k=2: λk=0.122 (only weakly 

dependent on α)
• λk = dmax / √N
• dmax = max difference between both cdfs
• N = number counts or photons



Flux distribution within bin: order 0, 1 
or 2 approximations

• f0(E) = true distribution
• f1,0 = N δ(E-Ej) with Ej bin centre
• f1,1 = N δ(E-Ea) with 

• f1,2 = N exp[(E-Ea)2/2τ2)] with

Ea = f (E)EdE

1 jE

2 jE
∫

2
τ = f (E)

1 jE

2 jE
∫ 2(E − aE ) dE



Comparing distributions in practice

• Take “true” line @bin boundary E1j, distribution f0

• Take “normal” line @ bin centre approximation 
for f1,0 (=f0 shifted by -ΔEj/2)

• Convolve both with instrument (Gaussian, width 
σ) and determine cumulative cdf; calculate dmax

Energy à



Extending to full spectra

• Above formalism for narrow lines (with 
Gaussian instrumental broadening)

• Full spectrum in resolution element r written 
as Sr = Σ wiFi

• In general 
• è error in Sr in broadband-spectrum smaller 

than error if all flux in a line
• è use

i
2w∑ ≤ iw∑

maxd =
r
max rN rD



Extending to full spectra II

• For total of R resolution elements:
• G0(cα)R = 1 – α      
• G1(cα)R = 1 – kα  
• (this makes use of distribution of maximum of 

a set of R variables)



Back to approximations order 0, 1, 2

• Can be shown that
• Δ0 < 2.1289 λk N-1/2

• Δ1 < 2.4418 λk
1/2 N-1/4

• Δ2 < 2.2875 λk
1/3 N-1/6



Model bin size
(result of Monte Carlo calculations)



Monte Carlo results

Order 0
(“classical” approach)

Order 1
(“SPEX recommended”)

Order 2

(Data binning)



Effective area curvature

Taking several steps in between (see paper):



Optimal binning

• From order 0 to order 1 improvement order of 
magnitude

• From order 1 to order 2 only slight 
improvement at lot of computational expense

• è choose order 1 as best option



Consequence for response design

If response matrix is Rij with i observed count 
energy bin & j photon energy bin:

Si =  Rij Fj +  Rij’ (Ea,j – Ej) Fj

with the prime indicating differentiation with 
respect to photon energy (second index)
Si is count spectrum, Fj incoming photon spectrum

Classical
Response
matrix

New term: 
response 
derivative



Data binning: Shannon theorem



Integrated Shannon theorem

X-ray spectra usually given as 
histograms, so need to use integrated 
form of Shannon theorem: use 
cumulative distribution at bin 
boundaries as only info available



Max difference Shannon 
approximation from true distribution 

for a Gaussian redistribution



Analytical approximation data bin size Δ

Nr: number of counts in resolution element considered
R: total number of resolution elements in the spectrum





Example: Capella LETGS spectrum

• 85 ks Chandra LETGS observation
• Range 0.86 – 175.55 Å
• Resolution 0.040 – 0.076 Å
• Strongest line (Fe XVII) has 15000 counts



Example: Capella (continued)

Binning Data 
bins

Model 
bins 

Resp. 
elements

comments

A 8.52x103 1.26x106 1.01x107 Constant bin size (20 mÅ data, 0,14 mÅ
model) 

B 6.20x103 9.14x105 7.31x106 Bin size follows resolution ΔE

C 5.12x103 1.23x105 9.84x105 Bin size follows resolution ΔE & N; 
photons @ bin centre Ej

D 5.12x103 8.21x103 6.57x104 Bin size follows resolution ΔE & N; 
photons @ average energy Ea













Final words
• Can use different binning for different 

components of the matrix:
• Example: CCD spectrum
– Diagonal needs fine binning but is narrow
– Partial events tail is broad but coarse binning 

sufficient
• This can save a lot of memory (& computing 

time!)
• All implemented in SPEX, now the others …
• Spread the news!



Part 2: Cstat

36



Why use C-stat?

• Classical !2 fitting drawbacks, in particular for 
low # counts

• Bias in flux, even for high counts ~ 1 count 
(Mighell 1999)

• Rebinning to >25 counts/bin may wash out 
spectral details
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What is Cstat?

• si model in bin i (model for 
source+background)

• Ni counts (source + background) in bin i

• C = 2 ∑i [si-Ni + Ni ln(Ni/si)]
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Criticism on Cstat

• Nousek & Shue (1989): The principal 
disadvantage of the C statistic is that there is no 
value corresponding to the reduced !2 value with 
which we can measure the goodness of the fit.

• Humphrey et al. (2009): Since the absolute value 
of the C-statistic cannot be directly interpreted as 
a goodness-of-fit indicator observers typically 
prefer instead to minimize the better-known !2 fit 
statistic.
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Cstat is a statistic

• C = 2 ∑i [si-Ni + Ni ln(Ni/si)]
• C is a statistic: given model si, Ni is Poissonian

distributed with mean si, so the expected 
value, variance etc. of C can be determined!

• Done in Kaastra (2017), gives numerical 
parameterization of expected value and 
variance of C
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Simulations
(1000 runs/point)

Hitomi SXS, Perseus 4 keV

RGS1, Capella 0.5 keV
42



On proper use of Cstat
(and no use of Wstat)
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Standard model

• Blackbody spectrum (SPEX: bb)
• Galactic absorption (SPEX: hot, with T=0.5 eV 

fixed (neutral) and Lodders et al. abundances)
• Fudge factor for individual spectra (SPEX: 
knak, i.e. piecewise multiplication with local 
power law, prescribed at grid of !i with 
correction factors fi, interpolated with 
powerlaws)

• Choose spacing of 2 Å for !i , starting at 15 Å



LETGS fit parameters

• Fit to 15-80 Å range
• C-stat = 19172 (expected 18839 ± 193)
• BB norm = 0.228 ± 0.005 [adopt 0.228]
• BB kT = 62.3 ± 0.2 [adopt 62.3]
• NH = 0.984 ±0.014 x 1024 m-2 [adopt 0.985]



Binning issues

• Some data showed unexpected behavior:

2000 2005 2010 2015

0
0.

5
1

1.
5

2

Ra
tio

Year

17 Å

LETG/HRC
LETG/ACIS
RGS1
RGS2

Example is 17 Å fudge 
factor for RGS1 of obsid
0201590101, revolution 798
Has correction factor of 
0.5±0.1, hence -5!
deviation



Deviant spectrum
Low spectrum at 17 Å, with relatively high subtracted background



Fudge factor depends on bin size
(multiples of 0.01 Å)
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What is going on?
• Issues with fitting method
• !2  fitting known to cause bias, so used already 

cstat
• However, for cstat method ∑(source+background

model) needed
• For RGS spectra (& many other instruments) 

measured background (scaled counts) used 
instead

• For source < background, this gives bias in 
weights



Binning: factor 2 (0.02 Å) – Model for 
RXJ 1856 – subtracted background
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Strong (super)Poissonian excesses
(11 counts, mean in this band 4.5 counts)



Wstat



Is Wstat the solution?

• In XSPEC, when CSTAT is used and data & 
background is Poissonian, they use WSTAT 
instead (but call it cstat…)

• For full definition, see WSTAT

• W determined as maximum likelihood estimate 
from background & source (that order)

• Background estimate depends on source model, 
so during fit (adjusting source model), the 
accounted background changes



Is Wstat the solution? II

• For low count rates, this gives problems:
• XSPEC manual: In practice, it works well for 

many cases but for weak sources can generate 
an obviously wrong best fit. It is not clear why 
this happens although binning to ensure that 
every bin contains at least one count often 
seems to fix the problem.

• This binning is undesired!



Alternative: make model for 
background

Method chosen: Wiener filtering (Numerical 
Recipes)
1. Make FFT of background spectrum
2. Determine noise level N2 at high frequency
3. Make crude model for “true” signal S2

4. Filter = S2 / (S2 + N2)
5. Multiply FFT by filter
6. Transform back



Pros and contras

• Pro:
– Average background level preserved
– Smooth background, reduces noise significantly

• Contra:
– Needs to extend spectrum with “mean” value to 

power of 2 number of bins
– May cause small deviations at edges spectrum
– FFT model not always ”automatically” to obtain



Example ffts
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Old & new filtered background
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Comparison methods
Method !2 Cstat (data bg) Wstat Cstat (Model bg)
Statistic 1188 1405 1154 1161

Dof/range 1102 1136±48 1102 1135±48

# evaluations 3084 2888 12873 3527

F (17 Å) 0.32±0.10 0.63±0.10 0.52(-0.18,+0.09) 0.50±0.10

F (27 Å) 0.90±0.05 0.93±0.04 0.92±0.04 0.93±0.04

F (37 Å) 0.96±0.06 1.03±0.06 0.97(-0.03,+0.14) 1.02±0.06

• !2  & Cstat with data bg: 

è bias

• Wstat: unstable, 

asymmetric errors, 4 x 

more model evaluations; 

bias? 58



Comparison methods
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