The multi-year 'absolute' timing of the Crab pulsar at high-energies using Jodrell Bank radio observations

Lucien Kuiper

SRON Netherlands Institute for Space Research

incl. INTEGRAL ISGRI, XMM-Newton EPIC-pn TM/BU , RXTE PCA, Fermi LAT, Fermi GBM BGO [NaI], [CXO] and NICER data

Netherlands Organisation for Scientific Research

Jodrell Bank radio observations: our baseline

- Daily monitoring of the Crab pulsar (P ~ 33 ms) started 31 years ago with 42 Ft telescope at 610 Mhz
- > Arrival time delay : $t_{arr} \sim DM/v_{obs}^2$
- > DM variations due to nebular plasma fluctuations
- Occasionally observations at 1400-1700 Mhz with larger Lovell telescope to constrain DM=DM(t)
- Before Dec-2011: DM = c After : DM = c + dDM/dt x t

Timing parameters (on monthly base) stored at JB database: pulse freq. and its first two time derivatives at epoch t₀ (JPL DE200)

Crab pulsar (PSR B0531+21) as timing calibration target for HE-instruments

 INTEGRAL ISGRI: Revs. 47-1877 (Oct. 23, 2017) (20-100 keV; 61 μs; using revised Time Correlation files as of late 2007 i.e. correcting for 47 μs REDU gs offset; using measured orbit in propagation delay)

> XMM-Newton EPIC-pn Timing & Burst Mode (2-10 keV; 30 μ s (TM), 7 μ s (Bu))

XMM launch - Oct. 2017

- Fermi LAT: Aug. 2008 Jan. 2018
 (>100 MeV; 1 μs; GPS)
- Fermi GBM BGO Nov. 26, 2011 Jan. 2018 (100 keV – 30 MeV; 2 μs; GPS)
- RXTE PCA: INTEGRAL launch Dec. 2011
 (2-32 keV; 1 µs (Good Xenon modes), but Crab obs. in event mode with 250 µs

(decommissioning in Jan. 2012)

Barycentering (barycen (XMM), gtbary (LAT), faxbary (RXTE); own IDL), epoch folding and correlation etc. processes all use equivalent procedures!

Absolute timing: All measurements

Absolute timing: Measurements minus outliers

SRON

13th IACHEC-2018, 9-12 April 2018

Instrument	τ	Δau	σ	8	κ	n
	(μs)	(µs)	(µs)			
Fermi LAT						
With outliers	-104	± 4	± 88	$1.4{\pm}0.2$	$3.8 {\pm} 0.5$	107
Without outliers	-111	± 4	± 57	$0.5 {\pm} 0.3$	$0.2{\pm}0.5$	93
XMM Newton EPIC PN						
Burst mode	-353	± 4	± 75	-0.1 ± 0.3	-0.6 ± 0.7	43
Timing mode	-271	± 4	± 69	$0.1{\pm}0.4$	-0.3 ± 0.7	42
Burst + Timing mode	-312	± 3	± 83	-0.1 ± 0.3	-0.3 ± 0.5	85
INTEGRAL IBIS ISGRI						
With outliers	-245	± 2	± 76	0.5 ± 0.2	$1.2{\pm}0.4$	122
Without outliers	-248	± 2	± 61	$0.1{\pm}0.2$	-0.7 ± 0.5	112
RXTE PCA						
With outliers	-288	± 3	± 79	$2.0{\pm}0.2$	7.7 ± 0.3	205
Without outliers	-297	± 3	± 56	$0.1 {\pm} 0.2$	$1.5{\pm}0.3$	197

Table 4.1: Time shift (τ) , uncertainty $(\Delta \tau)$, standard deviation of the distribution (σ) , skewness (S), kurtosis (K) and the number of measurements (n).

Distribution widths: $\sim 60 \ \mu s$!

(XMM-Newton ~10-15 μ s wider)

$$\sigma_M^2 = \sigma_I^2 + \sigma_{JBO}^2$$

Peak-to-peak uncertainty t_{acc} of Jodrell Bank (radio) arrival times

Figure 4.7: A histogram of the uncertainty t_{acc} in JBO monthly Crab pulsar ephemerides. Uncertainties without outliers are coloured dark-grey. Outliers are colored light grey. 3 outliers have an uncertainty of more than 600 μ s and are outside the plot range of this figure.

Average t_{acc} : 118 ± 43 µs \rightarrow

For sinusoidal variations, RMS or $\sigma_{\rm JBO}$ = 118 / 2 $\sqrt{2}$ ~ 42 ± 16 μ s

Thus, σ_{M} reflects for a significant part the uncertainty in σ_{JBO}

$$(\sigma_{I} = 35 \pm 20 \ \mu s)$$

IBIS ISGRI: Crab absolute timing 20-100 keV

200

In-depth study August 2017: NICER 5-15 Aug; 28.674 ks, ISGRI (Rev-1850; 12-13 Aug), Fermi LAT/GBM NaI BGO

13th IACHEC-2018, 9-12 April 2018

Instrument related notes: INTEGRAL ISGRI

- > Updated time delay $\Delta t = -248 \pm 2 \,\mu s$ is consistent with earlier value of $-285 \pm 12 \,\mu s$ (Kuiper et al. 2003), taking into account the 47 μs REDU ground station error
- Since 26/11/2012 Fermi GBM NaI/BGO in TTE mode
 i.e. 2 μs accuracy (GPS synchronized / s) in 128 chan.

Comparison ISGRI/NaI Aug-2015 data yielded: $\Delta t_{GBM-ISGRI} = +26.3 \pm 6.4 \mu s$

(GBM a bit ahead)

Comparison using the (transitional) ms-pulsar IGR J18245-2452 (P=3.9 ms) in M28 during April 2015 outburst yielded $+23 \pm 109 \ \mu s$

Instrument related notes: Fermi LAT

- > Abdo et al. (2010) ApJ 708, 1254 reported a delay $-281 \pm 12 \pm 21 \ \mu s$
- > We report a delay of -111 \pm 4 μ s (9 years of LAT data)
- > The Veritas collaboration reported in Sci. 334, 69 (2011) a corrigendum of the LAT result: $-138 \pm 12 \pm 21 \,\mu s$ (Aug. 08 Apr. 09)

We found for same period : $-141 \pm 4 \ \mu s$, now consistent!

Instrument related notes: XMM-Newton

> The delays measured in TM and Bu mode differ significantly: 82 μ s

Do NOT mix TM and Bu mode data!

- Some XMM obs. are excluded due to (uncorrectable) frame (?) jumps/shifts
- > Distributions wider
- Pile-up in TM mode (especially during the Fall observations; distorted pulse shape). Much better timing calibration sources are (radio) ms-pulsars: PSR B1937-21 (1.6 ms) & PSR J0218+4232 (2.3 ms)

(PTA; NICER, NuSTAR, CXO, Fermi LAT)

Given these problems at ms-scales creating timing models from XMM EPIC Pn is tricky for pulsars with periods below ~10 ms For time scales >100 ms it is fine: e.g. coherent timing model (2002-2017) for INS RX J1856.5-3754 (P~7s) With a pulsed fraction of only 1%

Concluding remarks / outlook

> Absolute timing accuracy of the HE-instruments is about 35 \pm 20 μ s

- Radio soft / hard X-ray delay: energy dependent or (small) offsets between instruments e.g. GBM NaI – ISGRI ~ +20 μs?
- NICER data can be added (Aug. 2017 +>) and possibly later also NuSTAR data when RMS ~ 0.1 ms (now RMS 1 ms)

In future: Combined radio / Fermi LAT ToA analysis will enable proper DM modelling (reduction σ_{JBO}) \rightarrow more accurate timing models!

Thank you for your attention!

Astrophysical result using ISGRI: shift between 20-100 keV and 100-300 keV profiles is only 4.9 \pm 1.4 µs (Revs. 727-1736 combination; 720 bins), NOT following the trend seen (suggested) by Molkov et al. (2010), ApJ 708, 403 based on SPI data

