In-orbit calibration status of Insight-HXMT

LI Xiaobo on behalf of HXMT Team Institute of High Energy Physics, CAS Apr. 9, 2018

11:00, June 15th, 2017

Outline

- Introduction to the payloads of Insight-HXMT: HE/ME/LE
- In orbit calibration status
- Background model estimation
- Summary

1.Science payloads

The high energy X-ray telescope: HE

18 identical Nal(TI)/CsI(Na) PHOSWICHs, a collimator is equipped in front of each phoswich to form the different field of view (FOV)
18 anticoincidence detectors (6 top +12 lateral side)

➤18 automatic gain control detectors(AGC):

▶²⁴¹Am + plastic scintillator

PHOSWICH:

Full energy Peak of 50 keV on 192 positions of Nal

Top ACD:

The medium energy X-ray telescope: ME

ME uses 1728 Si-PIN detectors read out by 54 ASIC (application specified integrated circuit).

The low energy X-ray telescope: LE

LE consists of 3 detector boxes, and each boxes contains 32 CCD236.

Element Size	100 µm square
Number of elements	~40,000
Sensitive area	21.1 mm x 20.8 mm

The charge transfer process will generate the split events.

2. The response of Insight-HXMT

 $f(E, \alpha, \beta) * PSF(E, \alpha, \beta) * ARF(E) * RMF(E, \alpha, \beta, C) \cdot T + B(C) = S(C)$

- PSF: Point Spread Function, response of the collimators.
- ARF: Ancillary Response File, effective areas
- RMF: Redistribution Matrix File, probability density distribution in observed channels.
- T: exposure time

HE/Nal: Energy-Channel Calibration

- Four lines can be found in blank sky observation. They will be used as the EC and energy resolution calibration.
- 191keV and 31keV line will be used to monitor the long stability of EC relation.

HE/Nal: energy resolution

• Air-slaked Nal on ground made the energy resolution bad. After 3 month in orbit, the resolution has kept almost same.

AGC @59.5keV before launch

<u>detID</u> ₽	201512	201612	201705	20170	20170	20170	20170	20171	20171
	23₽	21₽	07₽	622₽	717₽	828₽	920₽	1010	205₽
HED-1₽	15.300	17.350	17.480	18.460	18.720	17.77@	17.69₽	17.85₽	17.680
HED-2+2	14.380	18 . 49₽	19.47₽	20.97#	17.790	17.49₽	17.76₽	17.94₽	17.740
HED−3+	14.600	16.87₽	16.97₽	18.340	17.890	17.59₽	17.46₽	17.35₽	17.41@
HED-4+	14.49₽	17.41₽	18.130	19.540	19.490	17.85₽	17 . 75₽	17.87₽	17.94₽
HED-5₽	14.71@	18.130	18.46+	19.920	17.910	17.81+	17.770	17.49₽	17.90₽
HED−6+	14.97@	17.09₽	17.730	18.680	18.180	17.160	17.28₽	17.040	17.300
HED−7₽	14.390	21.59₽	23.82#	27.060	21.720	19.460	19.47+	19.260	19.700
HED-8₽	14.78₽	16.12+	16.01+	16.940	16.860	16.67#	16.66+	16.640	16.740
HED-9₽	15.90₽	17.130	17.46₽	18.210	18.260	17.90₽	17.75₽	18.050	18.130
HED-104	14.77₽	18 . 56₽	18.76+)	20.210	20.530	19.93#	18.87+	18.890	19.00
HED-11₽	14.170	15.34+	15.59₽	16.200	16.42+	15.92+	15.83+	15.70₽	15.98₽
HED-12₽	14.420	16.08+	16.35₽	16.890	16.830	16.77#	16.57#	16.67#	16.630
HED-134	14.830	16.07#	16.360	17.280	17.090	16.92#	16.88+	17.070	17.01*
HED-14₽	14.390	15.14₽	14.94+	16.080	16.180	16.100	16.11+	15.84+	16.08+
HED-15	14.51@	15 . 68₽	15.98+	16.874	16.930	16.67#	16.62#	16.82#	16.760
HED-16	14.090	15 . 85₽	15.91+	16.774	16.97+	16.69#	16.51~	16.31@	16.630
HED-17₽	14.260	16.92+	16.92+	18.280	17.930	17.390	17.490	17.43₽	17.69₽
HED-18	14.44	15 . 45₽	15.66+	16.640	16.650	16.49#	16.45	16.51~	16.650

In orbit:

On ground:

 $R(Ch) = \frac{a + b * Ch + c\sqrt{Ch}}{Ch}$

The energy resolution for 31keV will be used to estimate the energy resolution (kres) in orbit.

HE/Nal: ARF calibration

- Crab pulsar was used to calibrate the ARF in order to avoid the influence of background.
- Pulse off: 0.6-0.8 as background;

RXTE/PCA and HEXTE 2011 obs.

The influence of energy resolution:

Black: kres=1 Red: kres=1.5 Green: kres=2

Fix the parameters of Crab pulsar from RXTE, residual of HE changed little at different Res in RMF.

12

New ARF of HE

Model	hemuti	ipoly<1>*log	gpar<2> Sour	cce No.:	1 Active/On		
Model	Model	Component	Parameter	Unit	Value		
par	comp						
1	1	hemutipoly	A1		7.58061E-03	+/-	2.06274E-03
2	1	hemutipoly	B1		-0.378736	+/-	0.113034
3	1	hemutipoly	C1		5.39503	+/-	1.53044
4	1	hemutipoly	A2		1.29342E-06	+/-	2.52970E-06
5	1	hemutipoly	B2		2.57114E-04	+/-	4.72537E-04
6	1	hemutipoly	C2		0.823749	+/-	1.89933E-02
7	2	logpar	alpha		1.52000	froze	en
8	2	logpar	beta		0.139000	froze	en
9	2	logpar	pivotE	(scale)	1.00000		
10	2	logpar	norm		0.448000	froze	en

- A <u>empirical function</u> f(E) has been introduced to modify the ARF.
- The new ARF will be: ARF*f(E)
- f(E) is quadratic function of two segment below and above 33.17keV.

ME: Verification of FWHM and EC in orbit

- The pixels carried ²⁴¹Am in orbit can also be used to estimate the change of FWHM in orbit. FWHM is almost same with ground.
- The EC is almost same as on ground using the Ag line in orbit.
- The RMF of ME is same as on ground.

ME: ARF calibration

LE: Verification of EC in orbit

- Use the EC underground to convert the PHA spectrum of CasA to PI spectrum (black dot). The background has not subtracted from the PI spectrum.
- Use CasA model convoluted the RMF and ARF to fit the PI spectrum.
- The EC in orbit has changed little.

LE: ARF Calibration

Energy(keV)

Residuals of Crab pulsar using the new ARF $\exists \mathbf{R} - \mathcal{H} X \mathcal{M} T$

Pulsar of SwfitJ0243 and Her X-1

- The statistic of SwiftJ0243 pulse component is about 100 times higher than that of crab pulsar.
- No additional systematic error : 2% will be good for fitting.

PSF calibration: Small area scan of Crab

Box

10830 09322 -1.12 4.675

3.93

Box 1

3.984

4.227

ntries Mean x -0.6061 -0.5495 RMS x

RMS y

The position of the Crab in different FOVs.

Light Curve fit of scanned data of Crab

counts/se

HE 010129500105F 20 -20 والحاوير ويتلقى والاعتراب والمقار والمتالة ووحوار معتز الليفه ولويته أتبع والنت Rate (ct/s) 20 20 -20 -50 Time (s)

- PSF model is correct and collimators did not distort when launch for HE and ME.
- The PSF of LE has some distortion. And we has modified the model of LE.

LE

3.Background Estimation of HXMT/HE

Very good correlation, the validity and stability need to be confirmed If the model parameter is stable, thus we can use it to estimate the BKG anytime!

22

Background Estimation of HXMT/ME

HXMT-ME has 3-Box, and each box has a blind FOV detector

ME BKG is dominantly caused by particle (e.g., proton), thus the blind FOV detector is used as a BKG detector

Establish a correlation between the BKG detector and other detectors.

0.6

Counts Rate (cnts s⁻¹)

Very good correlation, the validity and stability need to be confirmed

Background Estimation of HXMT/LE

The same as the method used in ME In high-energy band, the BKG is dominant by the particle, we can use the blind detector to estimate the BKG.

In Low-energy band, the BKG is dominant by CXB, so we must obtain the CXB sky map to estimate the BKG.

Rate

100

200

200 Rate

150

400

300 🗏

Jounts 100

Rate

ounts

0.15

P010129300201-20171102-01-0

12

- The ARF calibration has been independently done by the crab pulsar without the BKG influence.
- The BKG has been tested through the blank sky observation. But the BKG estimation software are still under test.
- The test of Crab nebula will be done soon. The empirical function to the ARF will be given through the multiple iterations and tested through simultaneous observations.