IACHEC campaign on 3C273

Update on Cross-calibration of INTEGRAL with NuSTAR and XMM

Lorenzo Natalucci (1) Manuela Molina (2), Angela Malizia (2)

(1) INAF/Institute for Space Astrophysics and Planetology, Rome (2) INAF/Institute for Space Astrophysics, Bologna, Italy

Campaigns on 3C273

- Results with IACHEC campaigns in 2012, 2015, 2016,2017
- Instruments on Chandra, NuSTAR, Suzaku, XMM and INTEGRAL

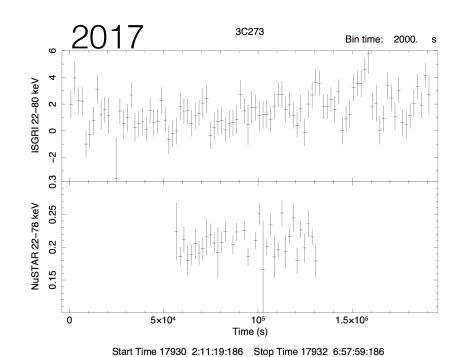
Published results

- Previous results of 3C273 with INTEGRAL and NusTAR joint fits published by Madsen et al 2016 (ApJ 812,14)
- Previous results in the soft band (<10 keV) published in Madsen+16 (arXiv: 1609.0903)
- Madsen et al., NuSTAR calibration paper

NuSTAR-INTEGRAL results

From analysis of single spectra

Exposure times 2017:

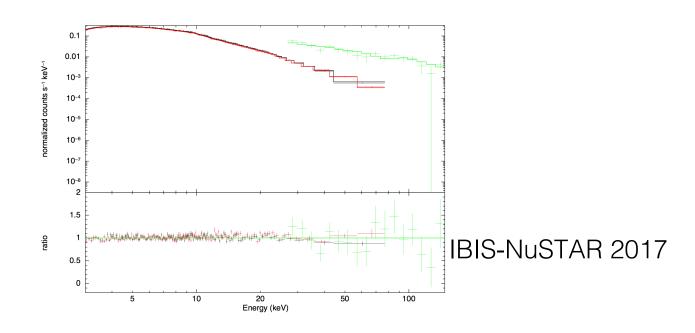

INTEGRAL ~2 days

NuSTAR: 35ks

SW & cal versions:

nustardas_06Jul17_v1.8.0 & CALDB version : 20180126

IBIS OSA10.2



model: wag*cflux*po							
Year	Instrument	Γ	$F_{20-40\text{keV}}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$\Delta \chi^2$			
2012	FPMA	1.674±0.005	$6.42^{+0.05}_{-0.04}$	0.994			
		$(1.669 \div 1.679)$	$(6.38 \div 6.47)$				
	FPMB	1.664 ± 0.005	6.697 ± 0.05				
		$(1.659 \div 1.669)$	$(6.648 \div 6.748)$				
	ISGRI	$1.646^{+0.20}_{-0.19}$	$6.418^{+0.77}_{-0.73}$				
		$(1.456 \div 1.846)$	$(5.688 \div 7.186)$				
2015	FPMA	1.727±0.01	4.478±0.07	1.009			
		$(1.717 \div 1.738)$	$(4.412 \div 4.545)$				
	FPMB	1.706 ± 0.01	4.663 ± 0.07				
		$(1.695 \div 1.716)$	$(4.592 \div 4.735)$				
	ISGRI	$2.861^{+1.79}_{-1.05}$	$5.85^{+3.28}_{-2.24}$				
		$(1.811 \div 4.646)$	$(3.612 \div 9.135)$				
2016	FPMA	1.606±0.007	12.578±0.127	1.096			
		(1.599÷1.613)	$(12.451 \div 12.705)$				
	FPMB	1.609 ± 0.003	$12.735^{+0.127}_{-0.14}$				
		$(1.602 \div 1.617)$	(12.595÷12.862)				
	ISGRI	$1.743^{+0.18}_{-0.17}$	$11.927^{+1.258}_{-1.203}$				
		$(1.570 \div 1.928)$	$(10.724 \div 13.185)$				
2017	FPMA	1.700±0.01	5.531±0.08	1.046			
		(1.690÷1.710)	$(5.45 \div 5.612)$				
	FPMB	1.651±0.01	6.046 ± 0.09				
		$(1.641 \div 1.661)$	(5.957÷6.139)				
	ISGRI	$1.724^{+0.31}_{-0.28}$	$6.367^{+1.18}_{-1.37}$				
		$(1.444 \div 2.033)$	$(5.267 \div 7.545)$				

L. Natalucci – IACHEC Meeting, Avigliano Umbro, 9-12 April 2018

NuSTAR-INTEGRAL joint fitting (3-110 keV)

	model: const*wag*po						
Year	Γ	C _{FPMA} /ISGRI	C _{FPMB} /ISGRI	$F_{20-40\text{keV}}^{\text{ISGRI}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$F_{20-40\text{keV}}^{\text{FPMA}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	FFPMB (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$\Delta \chi^2$
2012	1.669±0.003	$0.995^{+0.07}_{-0.06}$	$1.024^{+0.07}_{-0.06}$ $1.211^{+0.416}_{-0.247}$	6.49	6.46	6.65	0.994
2015	1.739 ± 0.012	$0.995^{+0.07}_{-0.06} \ 1.196^{+0.411}_{-0.244}$	$1.211^{+0.416}_{-0.247}$	3.74	4.47	4.53	1.012
2016	1.608 ± 0.005	1.069 ± 0.06	1.087 ± 0.06	11.73	12.54	12.75	1.094
2017	1.677±0.007	$0.861^{+0.09}_{-0.07}$	$0.88^{+0.09}_{-0.08}$	6.62	5.70	5.84	1.055

L. Natalucci – IACHEC Meeting, Avigliano Umbro, 9-12 April 2018

NuSTAR-XMM/pn results

From analysis of single spectra

Exposure times:

NuSTAR: 35ks

XMM: 65 ks

model: wag*cflux*po						
Year	Instrument	Γ	$F_{2-10\text{keV}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$\Delta \chi^2$		
2012	pn	1.672±0.03	6.937±0.07	0.992		
	_	$(1.641 \div 1.703)$	$(6.87 \div 7.00)$			
	FPMA	1.651 ± 0.03	7.577 ± 0.10			
		$(1.615 \div 1.687)$	$(7.473 \div 7.678)$			
	FPMB	1.675 ± 0.04	7.75 ± 0.11			
		(1.637÷1.712)	$(7.64 \div 7.86)$			
2015	pn	1.680±0.02	$6.16^{+0.04}_{-0.03}$	1.023		
		$(1.660 \div 1.700)$	$(6.13 \div 6.20)$			
	FPMA	1.706 ± 0.02	6.30 ± 0.05			
		$(1.684 \div 1.728)$	$(6.25 \div 6.35)$			
	FPMB	1.694 ± 0.02	6.31±0.05			
		$(1.672 \div 1.717)$	$(6.26 \div 6.36)$			
2016	pn	1.549±0.01	$12.98^{+0.05}_{-0.06}$	1.129		
		$(1.535 \div 1.563)$	$(12.92 \div 13.03)$			
	FPMA	1.585 ± 0.01	$14.24^{+0.08}_{-0.09}$			
		$(1.569 \div 1.601)$	$(14.15 \div 14.32)$			
	FPMB	1.575 ± 0.02	14.46 ± 0.09			
		$(1.558 \div 1.591)$	$(14.37 \div 14.55)$			
2017	pn	1.491±0.01	$6.55^{+0.02}_{-0.03}$	1.051		
	_	$(1.478 \div 1.503)$	$(6.52 \div 6.57)$			
	FPMA	1.625 ± 0.02	$7.32^{+0.06}_{-0.07}$			
		$(1.603 \div 1.648)$	$(7.25 \div 7.38)$			
	FPMB	1.623 ± 0.02	$7.41^{+0.06}_{-0.07}$			
		$(1.600 \div 1.645)$	$(7.34 \div 7.47)$			

NuSTAR-XMM joint fitting

	model: const*wag*po							
Year	Γ	C _{FPMA/XMM}	C _{FPMB/XMM}	$F_{2-10\text{keV}}^{\text{XMM}}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹)	$F_{2-10\text{keV}}^{\text{FPMA}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$F_{2-10\text{keV}}^{\text{FPMB}}$ $(10^{-11}\text{erg cm}^{-2}\text{s}^{-1})$	$\Delta \chi^2$	
2012	1.667±0.02	1.095±0.02	1.115±0.02	6.926	7.588	7.724	0.987	
2015	1.693 ± 0.01	1.019 ± 0.01	1.023 ± 0.01	6.15	6.27	6.30	1.021	
2016	1.567 ± 0.01	1.093 ± 0.01	1.113 ± 0.01	12.95	14.17	14.42	1.131	
2017	1.541±0.01	1.10±0.01	1.114±0.01	6.53	7.18	7.27	1.116	

Conclusions

- NuSTAR vs INTEGRAL good agreement confirmed within ~10% (mostly limited by the low statistics)
- epic-PN spectra significantly harder than NuSTAR in the 2017 observation
- epic-PN flux normalisation lower than NuSTAR (~10%).