





Funded by the Horizon 2020 Framework Programme of the European Union

### Cross-calibration consensus forum



Jukka Nevalainen 13<sup>th</sup> IACHEC meeting, Italy, 2018







- \* Action initiated in 2016 IACHEC meeting
- \* A forum for dedicated discussion between the different working groups
- \* Utilise the collective experience of IACHEC to go beyond the WG tasks
- \* Attempt to understand the instruments as a whole
- ☆ Verify that WGs are consistent
- 🖈 Ask and answer questions like:
  - How do the analyses of different types of objects look when put together?
  - Are the residuals btw two given instruments similar, independent of the object type? Should they be similar?
- \* Experts on the calibration of different instruments could try to understand the cross-cal patterns. Find and test different sources of calibration problems. (Complementary to Concordance Calibration, PyBLocks)<sup>2</sup>







Funded by the Horizon 2020 Framework Programme of the European Union

Agenda for today

- 1) Consistence
  - 1.1) Blazars v.s.clusters
  - 1.2) Annual review of Stack Residuals Spectra
  - 1.3) Comment round btw WG chairs before submission
- 2) Crab absolute flux measurement







Funded by the Horizon 2020 Framework Programme of the European Union

# 1) Do we have a consistent picture?







Funded by the Horizon 2020 Framework Programme of the European Union

# 1.1) Blazars v.s. clusters







- Read et al., 2014, A&A, 564, 75 (2XMM): Crosscalibration of the XMM-Newton EPIC pn and MOS on-axis effective areas using 2XMM sources
- Schellenberger et al. 2015, A&A, 575, 30 (HIFLUGCS): XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters. Systematic temperature differences and cosmological impact
- Madsen et al., 2017, AJ, 153, 2: IACHEC crosscalibration of Chandra , NuSTAR , Swift , Suzaku , and XMM-Newton with 3C 273 and PKS2155-304.
- Nevalainen+2018 (MMS), preliminary









Energy (keV)







Funded by the Horizon 2020 Framework Programme of the European Union

# 1.2) Annual review of Stack Residuals Spectra







- Hard to compare in detail stack residuals spectra and flux ratios
- JN commits to perform an annual SRS review in this forum (if new results available)
- Requires the data and responses. Heritage data base...







Funded by the Horizon 2020 Framework Programme of the European Union

# 1.3) Comment round btw WG chairs before submission of a new IACHEC paper





- To ensure a consistent message outside the IACHEC
- If agreed, how to implement?







Funded by the Horizon 2020 Framework Programme of the European Union

# 2) Crab absolute flux measurement







Funded by the Horizon 2020 Framework Programme of the European Union

 Stray light NuSTAR measurement of Crab (Madsen+17) bypasses the mirror → less complicated path → easier to model very accurately

# NuSTAR stray light observations

#### Paper submitted and accepted in ApJ

20

10

0

-10

-20

10

0

-10

-20

-20

-10

0

Det X (mm)

10

20

Det Y (mm)

-20

10110001002 FPMB

0

Det X (mm)

10

10110004002 FPMA

20

-10

Det Y (mm)





### Response

- Area on detector (1%)
- Be window (1%)
- 100 nm with a throughput of 92% at 5 keV and 98% at 10 keV.
- RMF (1%)
  - 98% between 4 40 keV and understood to < 1%</li>

## Spectrum

# Nuabs \* Tbabs \* powerlaw NH=2.2 x 10<sup>21</sup> cm<sup>-2</sup>

- At 4 keV the absorption of this column is 1% and if the column was increased to 4 x 10<sup>21</sup> cm-2 the absorption at 4 keV would be 2%.
- With the best fit detector absorption parameters frozen, NH has for these observations a 90% confidence limit of 1.1 x 10<sup>21</sup> cm<sup>-2</sup>.

• <u>Nuabs</u> is fitted. It is somewhat degenerate with NH.





- Nuabs fitted together with the Crab model. Model parameters differ by 50% from Madsen15a+. No problem.
- 2015 and 2016 off-axis 3-7 keV flux (the true flux) is 12% higher than in NuSTAR focused <u>SIMULTANEOUS</u>? (YES) observation →
- Nustar mirror effective area too high in the 3-7 keV band. WHY?
- Lowering NuSTAR mirror effective area by 12% increases the NuSTAR flux and decreases the instr/NuSTAR flux ratios by 12%
- 3-7 keV pn/NuSTAR flux ratio = 0.95 (PKS2155 and 3C237, Madsen15b+)
- Assuming the stray light flux measurement is absolutely correct, pn/Nustar flux ratio decreases to 0.85
- pn 3-7 keV flux too low by 15%, let's increase pn flux by 15%. What happens to clusters?



### Multi Mission Study (4 clusters) pn 3-7 keV band flux scaled up by 15%



### Multi Mission Study (4 clusters) pn 0.5-7 keV band flux scaled up by 15%



### Action items

- Andy B. will investigate the Swift/XRT giving harder 1-2 keV band spectra
- JN commits to perform an annual SRS review in this forum (if new results available). Published in the IACHEC meeting report in arXiv.
- Eric implements a page on Wiki where each IACHEC author is encouraged to post a submitted paper for comments
- JN and I. Valtchanov will keep track at plans of calibrating EPIC-pn with NuSTAR absolute Crab flux measurement