

The X-ray Integral Field Unit calibration plan

François Pajot Institut de Recherche en Astrophysique et Planétologie

April 10th 2018 - 13th IACHEC Meeting - Avigliano Umbro

A jump in high sensitivity high resolution spectroscopy

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

X-IFU spectroscopy on clusters simulations

Barret et al. SPIE 2016

- Reconstructed bulk motion velocity field of the hot intra-cluster gas for a 50 ks X-IFU observation of the central parts of a Perseus like cluster considered at a redshift of 0.1
- Simulated X-IFU spectrum of a z = 1 galaxy group with kT = 3 keV and L_X = 1 x 10⁴⁴ erg/s for 50 ks. Emission lines from elements which are key to understand chemical evolution can be clearly seen.

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

The X-ray Integral Field Unit

Parameters	Requirements			
Energy range	0.2 — 12 keV			
Energy resolution ¹ : E < 7 keV	2.5 eV			
Energy resolution: E > 7 keV	E/ΔE = 2800			
Field of View	5' (equivalent diameter)			
Effective area @ 0.3 keV	> 1500 cm ²			
Effective area @ 1.0 keV	> 15000 cm ²			
Effective area @ 7.0 keV	> 1600 cm ²			
Gain calibration error (peak, 7 keV)	0.4 eV			
Count rate capability nominally bright point sources ²	1 mCrab (> 80% high-resolution events)			
Count rate capability brightest point sources	1 Crab (> 30% throughput)			
Time resolution	10 µs			
Non X-ray background (2 — 10 keV)	< 5 10 ⁻³ counts/s/cm2/keV (80% of the time)			
¹ goal 1.5 eV, ² goal 10 mCrab (> 80% high-resolution events) events				

- Consortium led by CNES/IRAP-F, with SRON-NL, INAF-IT and other European partners, NASA and JAXA.

X-IFU detectors and dewar

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

- Most of the X-IFU top-level calibration requirements stem directly from the Athena level
 - all calibrations will be performed at pixel level
 - some additional requirements may be added by the instrument to lower levels (e.g. door calibration)
- Experience from work done for HITOMI/SXS and XARM/Resolve micro-calorimeter arrays is essential
 - definition of requirements
 - calibration methodology specific to microcalorimeters
 - on-ground and instrument calibration sources (grating monochromators, channel-cut crystal monochromators, EBITs,...)
 - in-flight targets definition
- Low energy range will benefit from grating instruments such as ARCUS
 - physics, astrophysical sources

Electron Beam Ion Trap (EBIT)

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

X-IFU calibration from ground to space

Avigliano Umbro, Italy, April 9th-12st 2018

X-IFU main calibration requirements

Requirement	Name	Athena	Mirror	X-IFU	Comments
Absolute effective area on-axis calibration (%)	CAL-EFF-R-001	10	6	4	At the 1σ level Over the [0.5-10 keV] bandpass
Relative effective area, broad-band on-axis (%)	CAL-EFF-R-003	5 (X-IFU), 3 (WFI)	2	3	At the 1σ level Over the [0.5-10 keV] bandpass
Relative effective area, fine structure (%)	CAL-EFF-R-005	1 (TBC)	1	TBD	At the 1σ level Working from XARM/RESOLVE req.
Knowledge of gain (eV)	CAL-ENR-R-001	0.4 (X-IFU) <i>,</i> 10 (WFI)	N/A	0.4	r.m.s. variation in [0.3-7 keV] [allows centroiding to 20 km/s at 7 keV]
Energy resolution calibration (%)	CAL-ENR-R-003	6 (X-IFU) <i>,</i> <mark>TBD</mark> (WFI)	N/A	6	Over the [0.3-7 keV] bandpass [turbulence to 20 km/s at 7 keV]
Energy redistribution calibration	CAL-ENR-R-004	TBD	N/A	TBD	Working from HITOMI/SXS experience and calibration data
Dead time (%)	CAL-TIM-R-001	1	N/A	1	All dead time is introduced during processing and known
Photon relative timing (µs)	CAL-TIM-R-003	10 (X-IFU) 5000/80 (WFI)	N/A	10	r.m.s. error (absolute requirement is 50 μs at Athena level)
Non-focused background	CAL-BKG-R-001	2	N/A	2	Goal 1%. For observations longer than 100 ks over 9'
Focused background reproducibility (%)	CAL-BKG-R-002	10	N/A	10	For observations longer than 100 ks over 9 squared arc minutes

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

- Energies / wavelength
 - Athena will measure velocities to 20 km/s at 7 keV (~0.006%) or wavelength accuracy to 3 mÅ at 10 Å (~0.03% at 1.2 keV)
 - Accuracy of wavelength current values is ~1% (Smith+Brickhouse 2014)

Figure 1.2: Left: lines with uncertainties in atomdb; right: uncertainties in wavelength translated to Doppler shifts. — From Smith & Brickhouse (2014, Figs. 5 & 6). Natalie Hell, PhD Thesis 2017

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

- Energies / wavelength
 - Athena will measure velocities to 20 km/s at 7 keV (~0.006%) or wavelength accuracy to 3 mÅ at 10 Å (~0.03% at 1.2 keV)
 - Accuracy of wavelength current values is ~1% (Smith+Brickhouse 2014)

- Other parameters mostly related to in-flight data analysis
 - − Collisional excitation rates → diagnostic line ratios
 - Radiative transition rates \rightarrow accurate cascades
 - Photoionization/absorption rates

 charge state distribution
 - − Charge Exchange cross sections → ionization balance, line ratios

X-IFU Calibration plan

- Prepared by :
 - the X-IFU Calibration Team (XCaT): Marco Barbera, Edoardo Cucchetti, Megan Eckart, Philippe Ferrando, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Etienne Pointecouteau
 - with contribution from: M. Leutenegger, G. Betancourt-Martinez
- First issue December 2018 (for the Instrument Preliminary Requirement Review)
 - 1. Presentation of the document
 - 2. Objectives of the calibration plan
 - 3. X-IFU calibration requirements
 - 4. X-IFU calibration strategy outline
 - 5. Calibration strategy and implementation
 - 5.1. Energy scale calibration
 - 5.2. Energy resolution and redistribution calibration
 - 5.3. Quantum efficiency calibration
 - 5.4. Background
 - 5.5. Straylight
 - 5.6. Timing calibration

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

- 6. Specific analysis and software tools
- 7. Fundamental/lab physics of X-ray emission at high resolution
- 8. Summary of calibration hardware needs

The end / the beginning...

13th IACHEC meeting Avigliano Umbro, Italy, April 9th-12st 2018

