

An Assigned Talk #2

CXC

1

Chandra X-ray Observatory

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 2,000$ yr (Finkelstein et al. 2006) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ compact object? Vogt et al. 2018 "O-rich" core-collapse SNR

ACIS 0.35-8.0 keV

N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

ACIS 0.35-8.0 keV

Paul Plucinsky

CXC

Chandra X-ray Observatory

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 1,000$ yr (Hughes et al. 2001) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

Red (0.3-0.5 keV), Green (0.5-0.75 keV) Blue (0.75 – 7.0 keV)

N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

CXC

ACIS 0.35-8.0 keV

IACHEC 2018

Paul Plucinsky

Chandra X-ray Observatory

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 1,000$ yr (Hughes et al. 2001) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

Red (0.3-0.5 keV), Green (0.5-0.75 keV) Blue (0.75 – 7.0 keV) N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

Red (0.3-0.75 keV), Green (0.8-1.1 keV), Blue (1.1 – 2.0 keV)

Paul Plucinsky

CXC

CXC

RGS Spectra of E0102 & N132D

CXC

RGS Spectra of E0102 & N132D

CXC

RGS Spectra of E0102 & N132D

Paul Plucinsky

Primary Calibrators

- extended objects which minimize pileup
- but not too large so that uncertainties in the off-axis telescope response become important
- line-rich spectra that have been characterized by the XMM RGS and/or Chandra HETG
- "bright" for Chandra and XMM, there is some pileup in the Chandra data

IACHEC Standard Candle SIMPUT files

- Work Project (WP) within the AHEAD project taken on by Sembay at Leicester University (LU)
- SIMPUT: A File Format for SIMulation inPUT (Schmid, C, Smith, R, Wilms, J, <u>http://hea-www.harvard.edu/heasarc/formats/simput-1.1.0.pdf</u>)
- Encodes spectral, imaging and timing information in format that can be read by simulators such as SIXTE (<u>http://www.sternwarte.uni-erlangen.de/research/sixte/index.php</u>)
- LU have produced SIMPUT files for 1E0102, N132D and RXJ156. Spectral models comes from IACHEC WGs. Image information on SNRs from Chandra images supplied by IACHEC Thermal SNRs WG.
- Simplification in that single spectrum assumed for whole remnant (i.e. no spectral-imaging information as yet).
- Assumed usage is for Athena simulations via SIXTE etc. but also another WP within AHEAD is using these as input to GEANT4 based raytracing codes for the Athena mirror.

CXC

Secondary Calibrators

- the thermal SNRs WG has just begun to think about this
- Hiroya Yamaguchi suggests N49 as a possible replacement for N132D as it 3-4 fainter than N132D and is slightly larger, 2.6X2.6 arcminutes, so pileup will be reduced, and it has a relatively strong lines of Mg, Si, S, Ar, Ca, and Fe

N49 Park et al. 2012

N49 Uchida et al. 2015

СХС

