Calibration plans for the Soft X-ray Imager’s CCDs on SMILE

Open University: George Randall, Matthew Soman, David Hall, Andrew Holland, Ross Burgon, Jonathan Keelan, Thomas Buggey, Oliver Hetherington, Steven Parsons

International Astronomical Consortium for High Energy Calibration
13th IACHEC Meeting 2018 – Avigliano Umbro, Italy
9th April 2018
The CEI is a research centre within the Open University, UK.
Expertise in X-ray spectroscopy and the effects of radiation damage for space applications.
Have previous experience working on Gaia, Euclid, JUICE and XMM Newton missions.
SMILE - Solar-wind Magnetosphere Ionosphere Link Explorer

- SMILE is a collaborative space mission between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS)
- Will combine soft X-ray imaging of the Earth’s magnetopause and magnetospheric cusps whilst simultaneously imaging the Northern Aurora using ultraviolet.
- Due for launch 2021.
- Instruments include: Soft X-Ray Imager (SXI); Ultra-Violet Imager (UVI); Light Ion Analyser (LIA); Magnetometer (MAG).

Fig. 5 - A visualisation of the Sun-Earth interaction
Fig. 6 - Preliminary SMILE design concept
The Soft X-Ray Imager (SXI)

- The Soft X-Ray Imager (SXI) is being led by the University of Leicester with contributions from institutions in the UK and overseas.
- SXI will take spectral images of the Earth’s magnetosphere which will enable researchers to observe the dynamical properties of the dayside magnetospheric boundaries within the soft X-ray range, between 0.2 and 2 keV.
- Silicon Micro-Pore Optics (MPOs) are used to focus the X-rays onto a focal plane of two large-area Charge-Coupled Devices (CCDs) where the X-rays are directly detected.
- Operation and image processing are carried out in the Front End Electronics (FEE), located under the focal plane.

Fig. 7 - Visualisation of the Soft X-Ray imager

Fig. 8 – Visualisation of SXI without optical baffle
Charge-Coupled Devices (CCDs)

- The SXI CCDs have been developed to optimise the soft X-ray sensitivity throughout the mission lifetime.
- CCD370 manufactured by Teledyne-e2v in the UK.
- 6x6 pixel binning to be used in operation.
- 6 x manufactured including devices for calibration, radiation damage, electronics testing, flight model and spares.
- Adapted from PLATO CCD 270s - same electrical interface.
- CCD380 to be used for calibration.

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive silicon thickness</td>
<td>μm</td>
<td>16</td>
</tr>
<tr>
<td>Native pixel size</td>
<td>μm × μm</td>
<td>18 × 18</td>
</tr>
<tr>
<td>Image area size</td>
<td>pixels</td>
<td>4510 columns × 3791 rows</td>
</tr>
<tr>
<td>mm × mm</td>
<td></td>
<td>81.18 × 68.24</td>
</tr>
<tr>
<td>Store area size</td>
<td>pixels</td>
<td>4510 columns × 719 rows</td>
</tr>
<tr>
<td>Responsivity</td>
<td>μV electron⁻¹</td>
<td>~ 7</td>
</tr>
<tr>
<td>Output nodes</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Serial registers</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 9 – Artists impression of SMILE CCD370

Storeshield - not present on actual devices
Open University Activities

- Modelling of the scale and types of radiation effects incident on the CCDs due to the mission orbit and instrument design.
- Minimising CCD damage and instrument background by optimising the design of CCD radiation store shield that is in close proximity to the detectors.
- Characterising the CCD behaviour in a mission-like radiation environment and developing correction algorithms for the radiation effects.
- Understanding the radiation background and its effect on images collected by the detectors.
- Calibration of the CCDs with soft X-rays to understand their response to different energy X-rays.
- Development and test of data processing algorithms for the on-board Event Detection Unit to identify soft X-rays observed in the images and reject background cosmic events.
CCD calibration plan - ground

Initial calibration will be done with CCD380 using PTB beamline at Bessy-II in Berlin.

- Response Matrix Function (RMF) describes the probability that a photon of a given energy is assigned to a particular detector channel.
- RMF can be determined by collecting a spectral response when a detector is exposed to each of a range of different photon energies.
- Quantum Efficiency (QE) to be determined for a range of different energies.
- PTB-EUV provides tuneable monochromatic beamline (50eV – 1950eV) and calibrated photodiode for above measurements.
- Possible repeat measurements on irradiated detector.

Fig. 10 - Example of RMF from EPIC camera on XMM-Newton (Sembay 2004)

Fig. 11 - Experimental setup from a previous campaign.
Further calibration will be conducted on the CCD370 flight model using a specially constructed soft x-ray calibration system within the OU laboratory.

- Variation across whole detector area
- Tuning charge spreading models for the flight detectors
- Dark current
- Defect pixels
- Noise
- Charge injection structure uniformity
- Clock optimisation
- Full well capacity and linearity
- Charge transfer efficiency
- Charge to voltage conversion factor (CVF)
- Trap pumping – defect identification

Fig 12. - Cryogenic test chamber within OU laboratory.
CCD calibration plan – in flight

- 55Fe calibration source, with an aluminium target, will be implanted within the structure of the Radiation Shutter Mechanism (RSM).
- Will produce manganese and aluminium k-shell emission at around 5.9 and 1.49 keV.
- Distribution and specification of sources are to be decided but will be positioned so that CCDs are illuminated when shutter is closed.
- Aluminium K-shell fluorescence will also be induced by the external radiation environment on the instrument throughout orbit.

Fig. 13 - Example of on-board calibration source spectrum from an XMM-Newton EPIC MOS X-ray camera.
Summary

• CCD380 - BESSY II – PTB campaign
 – RMF and QE measurements using tuneable X-ray source
 – Tuneable X-ray source 50 eV to 1900
 – possibly repeat measurements on irradiated sensor

• CCD370 Flight Models
 – OU Lab soft X-ray source for whole device calibration
 – Variation across whole detector area
 – Tuning charge spreading models for the flight detectors
 – Dark current, defect pixels, CVF, noise, defects, etc.

• CCD370 In-flight calibration
 – 55Fe source on shutter mechanism (6 keV)
 – Al and Mn K$_\alpha$ fluorescence from 55Fe and celestial sources