

Euro

ace Agency

XMM-Newton Calibration Update

Ivan Valtchanov, XMM SOC, ESAC, ESA on behalf of the XMM-Newton Calibration Team

IACHEC #13, 9-12 Apr 2018, Tenuta dei Ciclamini

ESA UNCLASSIFIED - For Official Use

Outline

- **1.** Recent calibration file releases
- 2. Current calibration topics
- 3. Cross calibration status

ESA UNCLASSIFIED - For Official Use

· = 88 🖕 22 🖛 + 88 🗯 🚍 28 88 88 = 28 88 🛶 🚳 88 = 28 88 89 88 🖬 👘

RGS: Effective Area Correction

Systematic decrease in the ratio of the fluxes from both RGS

On average, the flux ratio RGS2/RGS1 decreases by \approx 0.4 % / yr

Rate of change depends on wavelength:

- significantly < 0 in the range 15-30 Å,
- close to zero or positive at shorter and longer wavelengths

•

RGS: Effective Area Correction Testing: RGS1 v. RGS2

3C 273 @ rev 1465

RGS: Effective Area Correction Testing: RGS2 / RGS1 Flux Ratio

NGC 5506 (Seyfert 2)

Dominated (>90%) by point source emission.

PN spectral comparison:

- annuli from 20"-25" to 40"-45"
- compared with 20" circle

Other sources show similar results

ESA UNCLASSIFIED - For Official Use

- Systematics in the current PSF modelling for all 3 XRTs
- Improve by iterative tuning of the PSF model parameters
- Source sample consists of 11 observations of bright non-piled-up point sources located at the nominal aim point
- 5-6 nested annuli being compared (up to 60" outer radius)
- 2 PSF model parameters (r0 and a) being varied changes affect off-axis angles < 3'

In XMM-CCF-REL-348, 08/2017

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use

New XRTn CCFs

Slide 9

MOS CTI and Gain Update

- New set of MOS CTI & Gain CCFs released (02/2018, XMM-CCF-REL-354 / 355):
 - MOS1: 24 epochs
 - MOS2: 27 epochs
- Epoch conformity between MOS1 and MOS2 broken after rev. 1163 (04/2006), mainly due to evolving charge traps within CCD columns

- Improvement of energy reconstruction of up to
 5 eV @ 1.5 keV and 15 eV @ 6 keV (for peripheral CCDs in latest epoch).
- Energy scale is now accurate to < 5 eV for all CCDs.</p>

ESA UNCLASSIFIED - For Official Use

Outline

- **1.** Recent calibration file releases
- 2. Current calibration topics
- **3.** Cross calibration status

ESA UNCLASSIFIED - For Official Use

Slide 11

Current calibration priorities

Following the recommendation by the XMM-Newton Users Group

- 1. XMM internal xcal
 - 2D PSF
 - CORRAREA and A_{eff}
- 2. Time-resolved quiescent-background gain-dependence (pn)
- 3. NuSTAR XMM-Newton cross-calibration
- 4. PN fast modes calibration (burst and timing)
- 5. Using NuSTAR as hard X-ray standard candle (off-axis Crab observations): implication on 1, 3 and 4.
- 6. Monitoring activities
 - MOS and RGS contamination
 - OM sensitivity degradation

ESA UNCLASSIFIED - For Official Use

Slide 12

□ II ≥ II = + II = ⊆ II II = Ξ = H = 0 II = II = H ★ ⊆

European Space Agency

•

Update of the CORRAREA Correction

The **CORRAREA** tool was implemented in SAS 14 (autumn 2014):

- Applies an empirical correction to the EPIC effective areas.
- Can be used to evaluate the impact that the current relative EPIC A_{eff} uncertainties have on astrophysical parameters derived from spectral fitting.
- Currently, a non-default SAS option.

A recalibration and full validation of the **CORRAREA** correction is currently being undertaken:

- Based on SAS 16, and current public CCFs.
- Larger source sample + more instrument modes.
- Revised screening: common GTIs, background selections, pile-up evaluation.
- Largely automated pipeline from data reduction to spectral and residual fitting.

→ See Cornelia Heinitz talk in Detectors and Background WG

PN Fast Mode Investigations

PN Timing Mode observations show several cases of sources with:

- larger than expected residuals at instrumental edges
- significant differences in line energies with respect to e.g. grating data (up to 70 eV at ~ 6 keV, expected ~20 eV)

Sources are in the moderate count rate regime.

Possible issue with rate dependent correction in Timing Mode (and Burst Mode).

The chain of corrections affecting the TI & BU mode energy scale is being systematically evaluated.

- Rate dependent correction (pattern recognition)
- Find event patterns
- Rate dependent correction (applied to charges)
- Gain correction
- Mode-specific gain correction
- CTI correction
- Long-term CTI correction
- CCD offset correction

ESA UNCLASSIFIED - For Official Use

Slide 14

RGS Contamination Monitoring

European Space Agency

*

₩

Slide 15

- + || - 2 _ || || _ _ _ 2 # _ 0 || _ 2 # 0

MOS Contamination Monitoring

Primary monitoring source: SNR 1E0102

Contamination status shows no change in trend:

- MOS1 stable
- MOS2 steadily increasing

+

Slide 16

Outline

- **1.** Recent calibration file releases
- 2. Current calibration topics
- 3. Cross calibration status

ESA UNCLASSIFIED - For Official Use

Slide 17

· = 11 🖕 :: = + 11 = 🔚 = 2 11 11 = = 2 :: 🖬 🛶 🚺 11 = : 1 💥 🖕 🔤

XMM-Newton Cross Calibration

 Instrumental flux ratios derived from a set of ≈ 150 observations in the XMM-Newton Cross-Cal Database.

```
• MOS1 / pn:
```

```
■≈ 1.00 (E < 0.54 keV)
```

```
■≈ 1.05 (E > 0.54 keV)
```

• MOS2 / pn:

■≈ 1.03 (E < 0.54 keV)

■≈ 1.08 (E > 0.54 keV)

- RGS / pn: From 1.06 to 0.96 with increasing E (using C-statistic)
- > 6 keV low statistical quality

4

ESA UNCLASSIFIED - For Official Use

EPIC-pn and NuSTAR

Broadband emission processes of Active Galactic Nuclei

> Master's Thesis in Physics Presented by

> > Andrea Gokus

22.09.2017

Dr. Karl Remeis-Sternwarte Bamberg Friedrich-Alexander-Universität Erlangen-Nürnberg

Figure 4.3: Fitted EPIC-pn spectrum (black) of Ark 120 with spectra from both detectors of *NuSTAR* (FPMA: red, FPMB: green) in the upper window. In the lower window ratio values for model vs. data are given for each spectrum.

ESA UNCLASSIFIED - FOF UNICIALUSE

Slide 19

(b) Median ratio values

4.5: Ratios from FPM spectra compared to best fit to EPIC-pn spectra

ESA UNCLASSIFIED - For Official Use

Sample of 10 AGNs

Ratio = FPMx/pn-model

Broadband emission processes of Active Galactic Nuclei

Master's Thesis in Physics Presented by

Andrea Gokus

22.09.2017

Dr. Karl Remeis-Sternwarte Bamberg Friedrich-Alexander-Universität Erlangen-Nürnberg

+

Slide 20

= 88 🛌 == += 88 🚍 🔚 = 🔚 = 88 == 18 == 19 88 == 18 =

THE ASTROPHYSICAL JOURNAL, 841:56 (5pp), 2017 May 20 © 2017. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/aa6970

Measurement of the Absolute Crab Flux with NuSTAR

Kristin K. Madsen¹, Karl Forster¹, Brian W. Grefenstette¹, Fiona A. Harrison¹, and Daniel Stern² ¹Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA *Received 2017 January 9; revised 2017 March 10; accepted 2017 March 23; published 2017 May 23*

- NuSTAR off-axis Crab observations provide the best absolute flux determinations of the Crab
- The combination of NuSTAR off-axis and NuSTAR on axis Crab observation will allow very accurate calibration of the NuSTAR effective area
- New NuSTAR response & effective area files are expected in summer 2018

ESA UNCLASSIFIED - For Official Use

Slide 21

= 11 🖕 == + 11 == 🚝 == 11 11 == == 🖽 🛶 🔯 11 == == 👯 🛀

XMM-Newton EPIC-pn calibration

The NuSTAR calibration can be used to re-calibrate the XMM-Newton EPIC-pn

- Analysis of sources which:
 - 1. Have simple spectra
 - 2. Were observed simultaneously with NuSTAR and XMM-Newton
- → 3C 273
- Challenges:
 - 1. Gain-shift (effective area is quite sensitive to gain-shifts)
 - 2. Number of photons at high energies (>7keV)
 - 3. Pile-up
 - (2. basically always implies 3 and not the FF mode)

ESA UNCLASSIFIED - For Official Use

pn-spectra versus NuSTAR models

expected current normalized counts s⁻¹ keV⁻¹ normalized counts s⁻¹ keV⁻¹ 10 10 0.1 0.1 0.01 1.2 0.01 1.2 ratio ratio 1 1 0.8 2 5 10 2 10 5 Energy (keV) Energy (keV)

━ + 11 ■ ≝ = 11 11 = = = ₩ = ∅ 11 = = ₩ ₩ ₩ |+|

The End

ESA UNCLASSIFIED - For Official Use

· _ II 🛌 :: = + II = 🔚 _ II II _ _ = :: = M II _ II _ = :: ||

RGS: Effective Area Correction

Algorithm and Implementation:

RGS: Effective Area Correction

Testing: RGS1 v. RGS2

30 35

_		3C	273 @ rev 1465	Model: two absorbed power-laws
		independe	ent RGS1 and RGS2 fits	without correction
	RGS1	RGS2	3× 0-0-1	
N _H (10 ²⁰)	$2.28^{+0.55}_{-0.56}$	$1.89^{+0.95}_{-0.79}$	om ² s ⁻¹ Å ¹	and the second se
	$1.85^{+0.53}_{-0.52}$	$2.19^{+0.77}_{-0.69}$	Photons . 2x10	
Slope power-law #1	$1.68^{+0.15}_{-0.33}$	$1.68^{+0.17}_{-0.41}$	j L	
	$1.51^{+0.22}_{-0.43}$	$1.52^{+0.26}_{-0.56}$		RGS1 RGS2
Norm (10 ⁻²) power-law #1	$3.61^{+0.41}_{-1.02}$	$3.52^{+0.42}_{-1.28}$		10 15 20 29 30 Wavelennth (Å)
	$3.13^{+0.67}_{-1.20}$	$3.20^{+0.78}_{-1.52}$	4×10 ⁴	with correction
Slope power-law #2	$3.61^{+0.76}_{-0.70}$	$3.69^{+1.18}_{-0.97}$		
	$3.16^{+0.70}_{-0.52}$	$3.20^{+0.93}_{-0.65}$	ີ ແ ເຫຼີ ເ	The second se
Norm (10 ⁻²) power-law #2	$0.56^{+0.94}_{-0.34}$	$0.43^{+1.19}_{-0.31}$	Photon 2×10	
	$0.97^{+1.14}_{-0.61}$	$1.01^{+1.45}_{-0.69}$		

without correction with correction

European Space Agency

35

30

15

+

10

+

20

Wavelength (Å)

25

Iterative scheme for the empirical correction of XRT XPSF parameters:

- Per source:
 - Extract spectrum from circular region
 - Extract spectra from several nested annular regions
 - Create respective RMFs
 - Create respective ARFs
 - Fit model to circular region spectrum
 - Apply this as reference model to annular spectra, derive residuals
- For all annular spectra, and all sources, determine a suitable statistic:

$$\sum_{i} \frac{(di-mi)^2}{e_i^2}$$

• Modify ELLBETA parameters in order to minimise the statistic

→ New XRTn_XPSF CCFs released: 08/2017 (XMM-CCF-REL-348)

ESA UNCLASSIFIED - For Official Use

Slide 27

+

European Space Agency

+

Outline

- **1.** Recent calibration file releases
- 2. New in SAS 17
- 3. Current calibration topics
- 4. Cross calibration status

ESA UNCLASSIFIED - For Official Use

Slide 30

PN Quiescent Background Gain Correction

- PN gain dependency on quiescent background.
- Energy scale correction uses the discarded line rate as proxy for the quiescent background.
- Current SAS implementation uses an **observation averaged rate**, already stored in the events file (**NDISCLIN** keyword).
- However, the QB may vary significantly within an observation, necessitating the use of the **instantaneous discarded line** rates, included in the housekeeping data stream.
- This requires a fundamentally different implementation at S/W level \rightarrow SAS 17
- Also requires recalibration and robust handling of telemetry gaps, outlier values, intrinsic noise.

ESA UNCLASSIFIED - For Official Use

Rate

Current High and Medium Priority Tasks

High priority

- EPIC flux cross-calibration:
 - CORRAREA and mirror Aeff
- Off-axis EPIC PSF
- XMM Cross Calibration Archive maintenance and development
- EPIC cross-calibration with other observatories
- Monitoring of EPIC energy scale, bad pixels and offsets
- PN quiescent background-dependent gain correction
- PN fast modes calibration
- Monitoring of PN flux stability
- Monitoring of PN timing accuracy
- Monitoring of MOS and RGS contamination

Medium priority

- EPIC vignetting
- EPIC particle-generated background characterisation
- PN energy scale for windowed modes

ESA UNCLASSIFIED - For Official Use

Slide 32

XMM-Newton Cross Calibration


```
• MOS1 / pn:
```

```
•≈ 1.00 (E < 0.54 keV)
```

```
■≈ 1.05 (E > 0.54 keV)
```

• MOS2 / pn:

•≈ 1.03 (E < 0.54 keV)

■≈ 1.06 (E > 0.54 keV)

• RGS / pn: From 1.00 to 0.93 with increasing E (using χ^2 statistic)

4

ESA UNCLASSIFIED - For Official Use

