

Timing calibration of *Resolve* microcalorimeter spectrometer on XRISM

Makoto Sawada (UMBC, NASA/GSFC), S. Koyama, C. Kilbourne, M. Tsujimoto, M. Eckart, M. Leutenegger, R. Cumbee, C. de Vries, Y. Terada, Y. Ishisaki, and many other members in the Resolve team

At the 14th IACHEC meeting

1. Introduction

- Time assignment in SXS and Resolve
- Time correction in SXS and Resolve
- 2. Results from SXS
- 3. Plan for Resolve

Resolve microcalorimeter

= Non-dispersive high-resolution spectrometer with nearly identical design/performance to Hitomi/SXS

6x6 pixels for 3'x3' FoV

RiSM

 $\Delta E = 5-7 eV (FWHM)$

0.3-12 keV band pass

Nearly identical detector & pulse processor → timing capability will also be identical to SXS

Purpose of timing calibration

1. Relative timing: Optimize coincidence screening of non x-ray backgrounds

antico: ~0.5 cps → time window <2 ms for <0.1% false coincidence

2. Absolute timing: Scientific requirements (LMXBs, pulsars, ...) ~ 1 ms

Time assignment of Resolve

Design of timing cal. (2.) depends on how PSP assigns trigger times (1.)

Pulse of a microcalorimeter event XRISM

Trigger time by PSP

Time assignment by PSP

PSP assigns (almost) E-independent trigger times at 5 µs resolution

Trigger time for "Low-res" events

- If two pulses are too close, PSP cannot use opt. filtering (Low-res)
- For L-res, use time when derivative hits the maximum

Xrism

Anticipated calibration terms

All these dependences are caused by imperfectness of optimal filtering

At the 14th IACHEC meeting

Time correction in pipeline

Calibration formula

Calibrated time = Trigger time – (a * RISE_TIME + b * DERIV_MAX + c)

a and b for E-dependence (we didn't use a in SXS)

Rism

c for absolute timing

CALDB format

separate CALDB entries for different grades and pixels

This formalization worked well for SXS, and will be used for Resolve

Summary of timing calibration

		Major mechanism	In SXS, calibrated by	
			Ground	In-orbit
Relative	Pixels	trigger threshold inconsistency	pulse records of cosmic-ray events	← Ground cal. confirmed w/cosmic ray events in orbit
	Grades	trigger point definition	pulse records of cosmic-ray events	← Ground cal. confirmed w/Crab pulsar
	Energies	non-linearity of pulse shape	N/A	folded light curve of Crab pulsar
Absolute		offset from real photon arrival time	N/A	folded light curve of Crab pulsar

KRISM

SXS results - Pixel/grade dependence XRism

- Pulse records of cosmic ray events in the ground tests
 - Calculate L-res times for H-res events and compare these
 - \rightarrow grade-to-grade (L to H/M) offset
 - L-res times are insensitive to trigger thresholds
 - → pixel-to-pixel offsets

SXS results - Energy dependence

- In-orbit Crab pulsar data (3/25, 9.7 ks after screening)
 - 1. Divide events for grades and three ranges of DERIV_MAX (~E)
 - 2. Make folded light curve for each and get peak phases
 - 3. Derive slope of peak phases as a function of DERIV_MAX

An example from H-res case

SXS results - Absolute timing

Calibrated by Crab pulsar coordinated radio observations

SXS results - Relative timing to antico XRISM

 After all the corrections were applied, pixel event times were compared to associated antico event times

- Coincidence window size was set to 500 μs.
 - 0.5 cps (ave.) * 500 μ s ~ 0.03% false coincidence ... small enough.

- We need to
 - 1. Evaluate uncertainties in SXS timing cal.
 - 2. Set Resolve timing cal. requirement
 - 3. Make plan for *Resolve* timing cal.

Uncertainty in SXS timing cal.

- Source of uncertainty sampling, statistical, and systematic
- Any rel. timing can also be calibrated using detector pulse records

Although marginal, there is some discrepancy ... need to watch in Resolve

Resolve timing cal. requirement (tentative) XRisM

• (Tentative) timing cal. requirement is set based on SXS results

		H & M-res	L-res	antico	
	Time assignment Resolution	5 µs	80 µs	80 µs	
Uncertainty (SXS)	Statistical (Crab, 1σ)	20 µs	30 µs	40 µs	
	Systematic	40 µs	120 µs	N/A	
Relativ require	ve timing ment (1σ)	80 µs	160 µs	160 μs (~1 ms window)	
Absolu require	ite timing ment (1σ)	1 ms			

Resolve timing cal. plan (tentative) XRISM

- ✦ Guiding principle: do what we did (successfully) in SXS
- Ground calibration
 - ✓ Pixel-to-pixel & grade-to-grade
 - Detector pulse records of cosmic-ray events
 - Modulated X-ray Source (MXS) data
- In-orbit calibration
 - \checkmark Energy dependence

- Folding analysis of Crab pulsar (hopefully with longer exposure)
- Detector pulse records in orbit
- \checkmark Absolute timing
 - Folding analysis of Crab pulsar
 - Coordinated radio observations are required, as done in SXS

- 1. XRISM/Resolve will use the same time assignment and correction system as Hitomi/SXS.
- 2. Timing requirement for Resolve is (tentatively) set based on the SXS calibration results.
- 3. Started discussion on Resolve timing calibration plan. Lessons from SXS will be used to improve the plan.