Status of the Concordance Project

Herman L. Marshall

Yang Chen, Xiao-Li Meng, Xufei Wang, David van Dyk, Vinay Kashyap, Paul Plucinsky, Matteo Guainazzi
Status of the Concordance Project

Herman L. Marshall

Yang Chen, Xiao-Li Meng, Xuefei Wang, David van Dyk, Vinay Kashyap, Paul Plucinsky, Matteo Guainazzi

Okunoshima ("Rabbit Island")
The Goal

- Answer to “How to change effective areas given many observations by different instruments differ?”
- Method: Multiplicative Shrinkage (Chen+ 2019)
 - uses all data to find best true fluxes, then correct EAs
 - needs t values, fractional uncertainties on prior EA
 - if ground-cal is poor (large t), observations drive new EA
 - if observations are poor (large s), prior dominates
- Developed jointly with statistics academicians
- IACHEC scientists set t values
- Working on new cross-cal data sets (Marshall+ 2019)
The Problem, Graphically

Observed Count Rate

Source Flux

C_{13}/T_{13}

F_1, F_2, F_3

A_1, A_2, A_3

a_1, a_2, $a_3 = A_3$

Estimated EA

Ideal EA

Concordance - 5/22/19
Concordance Approach

- Shrinkage method (Meng, 2015 IACHEC)
 - Start with $C_{ij} = \text{Counts for instrument } i \ (1..N), \text{ source } j \ (1..M)$
 - Assume “true” areas A_i, “true” fluxes F_j, $s_{ij} = \text{st. dev. in } \ln(C_{ij})$
 - Estimate F_j by $f_{ij} = C_{ij} / a_i$ ($a_i = \text{prior estimate of } A_i$)
 - Method determines “best” F_j and “better” EAs $a_i = a_i^w \ (C_{ij}/F_j)^{1-w}$
 - $w = 1/(1+Mt_i^2/s_{ij}^2)$, $t_i = \text{“a priori” st. dev. in } \ln(a_i)$
 - $w = 0$ means data dominate, drive change in EA
 - $w = 1$ means data are mediocre, EA isn’t changed
 - brings $f_{ij} = C_{ij} / a_i$ closer to but not precisely to F_j

- IACHEC team sets t_i, runs shrinkage analysis
 - IACHEC team recommends changes from a_i to a_i
 - Process runs for each of many bandpasses “independently”
Concordance Plan (2018)

- Publish method (Chen+ ’18, JASA) — DONE (responding to ref.)
 - Outlier handling with t-distribution — DONE
 - Poisson distribution for fainter samples
- Publish trial results (Marshall+’18, SPIE & JATIS)
 - Oriented to astronomers
 - Add Capella emission lines (Chandra)
- Add more IACHEC cross-cal results
- Add features
 - Use smoothness from global source models
 - Use covariances from EA models
 - Consider handling of RMF uncertainties
- Work with MCCAL, pyBLoCXS (Drake et al.)
- Complete the instrument-energy matrix — 90% DONE
Concordance Activity (2019)

- Publish method (Chen+ ’18, JASA) — DONE
- Outlier handling with t-distribution — DONE
- Poisson distribution for fainter samples
- Complete the instrument-energy matrix — DONE
- Publish astro version (Marshall+’18, SPIE & JATIS) — In progress
 - Use tau values from ‘the Matrix’
 - Add Capella emission lines observed with Chandra — In progress
- Add more IACHEC cross-cal results
- Add features
 - Use covariances from EA models — In progress
 - Use smoothness from global source models
 - Consider handling of RMF uncertainties
- Work with MCCAL, pyBLoCXS (Drake et al.)
The Matrix (v4)

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>Chandra ACIS</th>
<th>Chandra HETGS</th>
<th>Chandra LETGS</th>
<th>XMM pn</th>
<th>XMM MOS1,2</th>
<th>ROSAT PSPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.15-.33</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>.33-.54</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>.54-.8</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>.8-1.2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1.2-1.8</td>
<td>2.6</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1.8-2.2</td>
<td>3.3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2.2-3.5</td>
<td>3.3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>3.5-5.5</td>
<td>4.9</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>5.5-10</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
The Matrix

<table>
<thead>
<tr>
<th></th>
<th>Suzaku XIS1</th>
<th>Suzaku XIS0,1,3</th>
<th>Astrosat SXT</th>
<th>Swift PC/WT</th>
<th>XMM RGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>.15-.33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.33-.54</td>
<td>20</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>.54-.8</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>.8-1.2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7.5</td>
<td>5</td>
</tr>
<tr>
<td>1.2-1.8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7.5</td>
<td>5</td>
</tr>
<tr>
<td>1.8-2.2</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2.2-3.5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>3.5-5.5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>5.5-10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
The Matrix

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>RXTE PCA</th>
<th>RXTE HEXTE</th>
<th>INTEGRAL IBIS</th>
<th>INTEGRAL SPI</th>
<th>NuSTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-3.5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5-5.5</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5.5-10</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>15-25</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>25-50</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>50-100</td>
<td>50</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>100-300</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
The Matrix

<table>
<thead>
<tr>
<th></th>
<th>Astrosat LAXPC</th>
<th>Astrosat CZTI</th>
<th>Suzaku HXD</th>
<th>Swift BAT</th>
<th>Fermi GBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5-5.5</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.5-10</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15-25</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>?</td>
</tr>
<tr>
<td>25-50</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>50-100</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>100-300</td>
<td>-</td>
<td>25</td>
<td>20</td>
<td>12</td>
<td>?</td>
</tr>
</tbody>
</table>

Concordance - 5/22/19
Concordance 1: 1E0102

\[\ln \left(\frac{A}{A^*} \right) \]

Chen+ '18
Concordance 1: 1E0102

Marshall+ ‘19

\[
\ln\left(\frac{A}{\bar{A}}\right)
\]

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Oxygen</th>
<th>Neon</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMM/RGS1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>XMM/MOS1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XMM/MOS2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XMM/pn</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ACIS-S3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ACIS-I3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ACIS/HETG</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Suzaku/XIS0</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Suzaku/XIS1</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Suzaku/XIS2</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Suzaku/XIS3</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Swift/XRT-WT</td>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>Swift/XRT-PC</td>
<td>10</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Concordance 2: 2XMM

- Data from Matteo Guainazzi
- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup; no EA change required

\[
\ln \left(\frac{A}{\overline{A}} \right) = t = 5\%
\]

\[
\ln \left(\frac{A}{\overline{A}} \right) = t = 2.5\%
\]

Chen+ '18
Concordance 2: 2XMM

- Data from Matteo Guainazzi, $t_{pn} = 0.02$, $t_{mos} = 0.06$
- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup; pn drives EA mod

$\ln(A/A)$

Marshall+ '19
Concordance 3: XMM Blazars

• 117 bright XMM sources from Matteo Guainazzi
• PSF clipped to reduce effect of pileup
• Result: 5% adjustment to pn indicated, 1-2% for MOS

\[\ln(\frac{A}{A}) \]

Chen+ ‘18
Concordance 3: XMM Blazars

- 117 bright XMM sources from Matteo Guainazzi
- PSF clipped to reduce effect of pileup
- Result: same as with XMM2 sample

\[\ln(A/A)\]

Marshall+ '19
Concordance 4: Capella

- Lines from Chandra grating spectra
- Ne x, Fe xxvii (15 Å), Fe xxvii (17 Å), O viii
- 5 sets of adjacent observations compared
- Not all instruments used each time
- Heterogeneous analysis in progress
Concordance Activity (2019)

• Publish method (Chen+ ’18, JASA) — DONE
• Outlier handling with t-distribution — DONE
• Poisson distribution for fainter samples
• Complete the instrument-energy matrix — DONE
• Publish astro version (Marshall+’18, SPIE & JATIS) — In progress
 • Use tau values from ‘the Matrix’
 • Add Capella emission lines observed with Chandra — In progress
• Add more IACHEC cross-cal results
• Add features
 • Use covariances from EA models — In progress
 • Use smoothness from global source models
 • Consider handling of RMF uncertainties
• Work with MCCAL, pyBLoCXS (Drake et al.)