ACIS Gain Challenges

Warm Focal Plane Temperatures
 \&
 Lorentzians

1. ACIS Gain Challenges

Cause of Gain decline.
How Chandra ACIS detector time-dependent gain is calibrated.
Calibration Challenges \& Solutions.
2. ACIS Warm Focal Plane Temperature Calibration

Analyses of 2017-2018 ECS observations of Al-Ka, Ti-Ka, Mn-K lines.
Lorentzian vs. Gaussian natural line emission profile.
FWHM vs FP_TEMP

Charge Transfer Inefficiency

ACIS CCD architecture

1) Charge Loss

2) Grade Migration

CTI manifests two modes:

1) Gain decline

Charge loss: Portion of charge packet is trapped, reducing overall PHA
2) QE decline

Grade migration: Trapped event charge is re-emitted into a trailing event island pixel during readout.

How ACIS Gain is Calibrated

External Calibration Source (ECS)

ACIS exposed when HRC is in the focal plane Fe55 sources, $\mathrm{T}_{1 / 2}=2.7$ years Bright ECS lines:

Al-K α	1.49 keV
Ti-K	4.51 keV
$\mathrm{Mn}-\mathrm{K} \mathrm{\alpha}$	5.89 keV

Line Energy Centroid Fit PHA Channel Spectrum

Simple Calculation to find Line Centroids
Fit at each 32×32 pixel location across the ACIS CCDs

PHA channel space histogram
NO gain correction applied during data reprocessing
1 channel $\approx 4.5 \mathrm{eV}$

Line Energy Centroid Fit vs ChipY

Line Energy Centroid Fit vs ChipY

Line Energy Centroid Fit vs ChipY

dPHA vs ChipY

Gain correction $=\mathrm{dPHA}[\mathrm{x}, \mathrm{y}, \mathrm{E}]$
Each location fit AI, Ti, Mn dPHA to energy scaling equation:

$$
d P H A=A \sqrt{E}+B E
$$

Solve for "A" and "B" coefficients. Unique for each chip(x, y) location.

dPHA vs ChipY

Gain correction $=\mathrm{dPHA}[\mathrm{x}, \mathrm{y}, \mathrm{E}]$
Each location fit AI, Ti, Mn dPHA to energy scaling equation:

$$
d P H A=A \sqrt{E}+B E
$$

Solve for "A" and "B" coefficients. Unique for each chip(x, y) location.

dPHA vs ChipY

Gain correction $=\mathrm{dPHA}[\mathrm{x}, \mathrm{y}, \mathrm{E}]$
Each location fit AI, Ti, Mn dPHA to energy scaling equation:

$$
d P H A=A \sqrt{E}+B E
$$

Solve for "A" and "B" coefficients. Unique for each chip(x, y) location.

dPHA vs ChipY

Gain correction $=\mathrm{dPHA}[\mathrm{x}, \mathrm{y}, \mathrm{E}]$

Each location fit AI, Ti, Mn dPHA to energy scaling equation:

$$
d P H A=A \sqrt{E}+B E
$$

Solve for "A" and "B" coefficients. Unique for each chip(x, y) location.

s3 e20

ECS Evolution

ECS Evolution

ECS Evolution

ECS Evolution

```
6 \text { months of ECS}
64\times64 pixel regions
\(=8 x\) more counts
```


ACIS-S3 Epoch75+76 8/1/2018-1/31/2019

No More Simple Line Centroid Fitting

Physical model does not exist.
Approximate the expected line profile using the shape of the response.

1. Extract RESPONSE vs PHA_Channel from RMF.
@ Energy corresponding to nominal Al-Ka, Ti-Ka, Mn-Ka
*(DET_GAIN Calibration Required for keV -to- PHA_Channel conversion)
@ Each spatial fitting region
32×32 pixels \quad I0/1/2/3, S2/3
64×64 pixels S1
256x32 pixels S0/4/5
2. Fit multiple gaussians to the response.
3. Stitch together the Model =

GAUSS_1 LineE thawed
GAUSS_1 norm thawed
GAUSS_1 sigma thawed
Subsequent gaussians LineE tied to GAUSS_1
*(offset relative to GAUSS_1)
Subsequent gaussians norm tied to GAUSS_1
Subsequent gaussians sigma tied to GAUSS_1
*Revised to 64x64 for TGAIN 3.0

1. Line Energy Fitting Constraints

- PHA channel search windows relative to RMF PHA channel peak (includes DET_GAIN correction to PHA) calculated from nominal Al-Ka, Ti-Ka, and Mn-Ka line energies.
- Search windows tailored to expectations:

10 and 12 windows RMF_PK-100 < PHA Search Window < RMF_PK+80
All other chips RMF_PK-100 < PHA Search Window < RMF_PK+15
FI chip node1/2 boundary region extends lower search channel to RMF_PK-120

- Initial line centroids = mean(channel @ 90\% max counts), weighted by smoothed counts.
- Abort fit if total counts within response FWHM < 6 (Al, Ti), or < 8 (Mn).
- Fit multiple-gaussian model to each Al, Ti, Mn line.

Al model:
multiple gaussian, fixed to $1^{\text {st }}$ gaussian
peak counts lower limit = 1.75
sigma lower limit = response sigma
initial_LineE - 15 > LineE > initial_LineE + 15

+ mean_background
+ multiple gaussian model of Si-Ka, frozen to: sigma= Al-K sigma, norm= max(smoothed counts within Si-Ka
window), LineE= channel @ max_counts within Al-K人 initial centroid x [1.14, 1.2]
Ti/Mn models similar to above, $\mathrm{K} \beta$ components replace Si-K \quad model.

2. Time-Dependent Gain Correction Fitting

- lowess, error weighted, smoothing LineE vs ChipY, for each ChipX column

Smoothing factor relaxed at FI node1/2 boundary
Missing data (LineE fitting did not converge) replaced with linear interpolation to nearby values

- Fit each ChipY set of dPHA values to energy scaling equation.

$$
d P H A=A \sqrt{E}+B E
$$

"A" and "B" coefficients thawed for all chips, "B" coefficient limited to: $1<B<8$
dPHA values for each line are weighted based on total line counts: Ti-K $<\mathrm{Al}-\mathrm{Ka}<\mathrm{Mn}-\mathrm{Ka}$

- Limit "B" coefficient for the column, and smooth versus ChipY:
mean(B) - stdev(B) < "B" < mean (B) + stdev(B)
lowess smooth "B", error weighting = reverse(chipY)
- Fit again with "B" coefficient frozen.

I3 LineE Before / After TGAIN Correction

Epoch 20
I3
Chip $X=1: 32$

chip Y midpoint

chip Y midpoint

I3 LineE Before / After TGAIN Correction

Epoch 20
I3
Chip $X=1: 32$

chipY midpoint

chip Y midpoint

Most Recent TGAIN Correction

 S3 $x=1: 64$s3 ciao4.11_caldb4.8.2_120_v3_64x64y
s3 ciao4.11_cald64.8.2_120_v3_64x64y

PHA channel

Intermission...

ACIS Warm Focal Plane Temperature Effects on Data Quality

Data

Epochs 70-75
1.5 years

5/1/2017-10/31/2018
128x 128y pixel regions
aimpoint chips

I3	
FP_TEMP	ksec
$-120:-119$	600
$-119:-118$	178
$-118:-117$	141
$-117:-116$	168
$-116:-115$	161
$-115:-114$	219
$-114:-113$	199
$-113:-112$	112
$-112:-111$	69
$-109:-108$	94

S3	
FP_TEMP	ksec
$-120:-119$	842
$-119:-118$	265
$-118:-117$	223
$-117:-116$	243
$-116:-115$	244
$-115:-114$	291
$-114:-113$	267
$-113:-112$	172
$-112:-111$	103
$-109:-108$	94

ECS Model

$K \alpha_{1,2}$ and $K \beta_{1,3}$ x-ray emission lines of the $3 d$ transition metals

> G. Hölzer, ${ }^{1}$ M. Fritsch, ${ }^{1,2}$ M. Deutsch, ${ }^{2}$ J. Härtwig, ${ }^{3}$ and E. Förster ${ }^{1}$
> ${ }^{1}$ X-ray Optics Group, Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
> ${ }^{2}$ Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
> ${ }^{3}$ European Synchrotron Radiation Facility, Bôite Possale 220, F-38043 Grenoble, France
> (Received 14 May 1997)

PI Channel Space, DETGAIN \& TGAIN Corrected

Al fit window= $\quad 0.9-2.1 \mathrm{keV}$
Ti \& Mn fit window= 3.3-7.2 keV

ECS LINES
Al-Ka lorentzian
Al-Kb lorentzian
Ti-Ka1
Ti-Ka2
Ti-Kb
Mn-Ka
Mn-Kb lorentzian lorentzians

FREE: norm, width=initial scaled to chipY, LineE norm=tied*Al-Ka, width=Al-Ka, LineE=tied*Al-Ka FREE: norm, width=initial scaled to chipY, LineE norm=tied*Ti-Ka1, width=Ti-Ka1, LineE=tied*Ti-Ka1 norm=FREE, width=Ti-Ka1, LineE=FREE
FREE: norm, width=initial scaled to chipY, LineE +6 additional lorentzians norm=FREE, width=Mn-Ka, LineE=FREE
+4 additional lorentzians norm=tied, width=lorentz_0, LineE=tied

INSTRUMENTAL

Si-Ka	gaussian	fixed \& chipY scaled for I-array
Au-Ma1	gaussian	fixed \& chipY scaled
Au-Ma2	gaussian	tied to Au-Ma1
Au-Mb	gaussian	tied to Au-Ma1
Au-Mg	gaussian	tied to Au-Ma1
Ni-Ka	gaussian	fixed
Au-La	gaussian	fixed
framestore $A u-M$	gaussian	fixed \& chipY scaled
framestore	Ni-Ka	gaussian

BACKGROUND Continuum, empirical model for 0.85-7.2 keV for I-array
powlaw low energy component, Pholndex>0
powlaw high energy component, Pholndex<0
gaussian $\quad 0.85>E>1.0$ low energy addition

$$
\operatorname{Gauss}(E)=K \frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(E-E_{0}\right)^{2}}{2 \sigma^{2}}
$$

Lorentz vs Gauss S3 Ti \& Mn

GAUSS

LORENTZ

FWHM ACIS-S3

FWHM ACIS-I3

