

Characterizing and Reducing the Background on the Athena WFI

IACHEC Detectors and Background WG Meeting, 22 May 2019

Eric Miller (MIT)

Catherine Grant, Mark Bautz, Bev LaMarr (MIT) Esra Bulbul, Ralph Kraft, Paul Nulsen (SAO-CfA) Dan Wilkins, Steve Allen (Stanford), Dave Burrows (Penn State) Athena WFI Background Working Group

The Problem

- Athena WFI Large Detector Array (LDA) consists of four 512x512 DEPFET arrays
- 130x130x450 µm pixels big target for particles that produce BG
- 5 ms frame time is not fast enough for full anti-coincidence

- Our goals are to develop algorithms that:
 - 1. Reduce the unrejected background due to particles
 - 2. Characterize that background to reduce systematic error

How Can We Predict the WFI Background?

- Existing data from similar missions
 - XMM EPIC pn, Chandra ACIS, Suzaku XIS, Swift XRT
 - Real-world, but suffer from insufficient data, dissimilar detectors and particle environment
- Geant4 simulations
 - Athena WFI Background Working Group
 - Being used to model and select the shield design (material, thickness)
 - Can examine the effects of individual cosmic rays, correlation between detected events that we can use

Sample Geant4 Particle Tracks (OU)

- 133 million proton primaries
- 1.04 million particle tracks
- 26,392 valid events < 15 keV
- 8,896 valid events, 2–7 keV

14th IACHEC Workshop — Shonan Village, Japan

XMM EPIC pn Small Window Mode, Filter Wheel Closed

- "Particle tracks" are contiguous pixels with at least one above 15 keV, or that contain more than 4 pixels above 0.1 keV.
- Frame with "Valid events" are 3x3 islands with EPIC pn PATTERN < 13 (singles, doubles, triples, quads).

Case D

neither

Statistics from Single Geant4 Primaries

	# of primaries producing particle track but no valid event	909,823 ((97.3%)
ase A	Fraction of 2–7 keV background	0%	
Ü	# of particle tracks per primary	1.12	
~	# of primaries producing valid event but no particle track	16,842	(1.8%)
ase I	Fraction of 2–7 keV background	65%	
0	# of particle tracks per primary	0.00	
U	# of primaries producing valid event and particle track	8,839	(0.9%)
Case	Fraction of 2–7 keV background	35%	
•	# of particle tracks per primary	1.89	

Correlation: Valid Events and Particle Tracks

	# of primaries producing particle track but no valid event	909,823 (97.3%)
ase A	Fraction of 2–7 keV background	0%	
Ŭ	# of particle tracks per primary	1.12	
~	# of primaries producing valid event but no particle track	16,842	(1.8%)
case I	Fraction of 2–7 keV background	65%	
0	# of particle tracks per primary	0.00	
U	# of primaries producing valid event and particle track	8,839	(0.9%)
Case	Fraction of 2–7 keV background	35%	
•	# of particle tracks per primary	1.89	

Correlation: Valid Events and Particle Tracks

	# of primaries producing particle track but no valid event	909,823	(97.3%)
ase A	Fraction of 2–7 keV background	0%	
Ű	# of particle tracks per primary	1.12	
~	# of primaries producing valid event but no particle track	16,842	(1.8%)
Case	Fraction of 2–7 keV background	65%	
0	# of particle tracks per primary	0.00	
U	# of primaries producing valid event and particle track	8,839	(0.9%)
Case	Fraction of 2–7 keV background	35%	
	# of particle tracks per primary	1.89	

Correlation: Valid Events and Particle Tracks

Exploiting the Correlation: Self Anti-Coincidence

- Eliminate valid events within certain distance around each particle track pixel
- Removes both background events and celestial X-rays
 - Reduces systematic error at the expense of statistical precision
- Exclusion distance can be tuned depending on the science goal
 - Long observations of low-surface-brightness targets
- Can be done on the ground if all particle track pixels can be telemetered; otherwise must be done on board

SNR Improvement with SAC

SNR Improvement with SAC

Summary

- Geant4 simulations predict a strong spatial correlation between particle tracks and valid events in the WFI background
- The correlation can be exploited to reduce the WFI background
- Self-anticoincidence (SAC, or partial veto) can reduce the systematic error due to background, at a cost to statistical error
- Tuning of masking radius depends on science goals, but should be user-selectable
- Work is ongoing