In-orbit Neutron and Radioactivation Background of the Hard X-ray Imager onboard Hitomi

Hiromasa Suzuki,

The University of Tokyo

Hirokazu Odaka, K. Nakazawa, K. Hagino, A. Bamba and the HXI team

©JAXA

Introduction: Hard X-ray background

In order to achieve higher sensitivities in hard X-ray band (> 10 keV),

- Improving S/N ratio by focusing X-rays.
- ◎ Reducing non-X-ray background (NXB).
 - \rightarrow Need to understand the properties of NXB.

Principal components of NXB in future observations:

- Atmospheric neutrons
- Radioactivation
- → Aim of this work:

Understanding the contribution of each component quantitatively.

©Chandra HP

1. Atmospheric Neutron Background

In order to extract neutron NXB, we did

- Comparison of measured spectrum to simulations to extract contribution of **neutrons**

Data reduction

• Data of the blank-sky observations obtained with DSSD 2-4

were used.	Observation period	OBSID	Target name
-> Eff. exposure	3/14 16:20-3/14 18:00	000007010	None2
~500 ks	3/14 18:00– $3/15$ 17:56	000007020	None2
	$3/15 \ 17:56 - 3/16 \ 19:40$	000008010-000008060	IRU Check out
	$3/16 \ 19{:}40{-}3/19 \ 19{:}00$	100043010 - 100043040	RX J1856.5 -3754
	$3/23 \ 13:30 - 3/25 \ 11:28$	100043050 - 100043060	RX J1856.5–3754

• Excluded periods from the data:

Spatial distribution of DSSD 2-4 rate

 ➢ Screened DSSD 2-4 rate showed a spatial correlation with CR rate obtained with the CR monitor.
 → NXB of DSSD 2-4 seemed to be dominated by atmospheric particles (neutrons and gamma-rays).

IACHEC 2019@Shonan village

Spatial correlation between DSSD 2-4 and CR rates

proportional component (Ax).

Spatial correlation between DSSD 2-4 and CR rates

Spatial correlation between DSSD 2-4 and CR rates

**Binned into five points in each panel

➤ Linear-function correlation was found. → Atmospheric particles should compose the proportional component (Ax).

Extraction of the atmospheric particle components

We subtracted the spectrum in low-CR periods from that in high-CR periods, to obtain "Difference spectrum".

Extraction of the atmospheric neutron component

We conducted a Monte-Carlo simulation using Geant4 toolkit to estimate the spectra of atmospheric particles.
(Armstrong+73;

Difference spectrum required only atmospheric neutrons. IACHEC 2019@Shonan village

2. Radioactivation Background

In order to extract radioactivation component, we

- Focused on CdTe-layer data
 - dominanated by radioactivation background (because of high-sensitivity in hard X-ray band)

Measured spectra

➤ Data selection

- Earth occultation data of CdTe-layer of the HXI
- Data were clasified into non-SAA orbits (time after SAA > 6 ks) and SAA orbits (time after SAA < 5 ks)
- Extracted spectra from each dataset

Comparison with our Monte-Carlo simulation

We compared the measurement to our Monte-Carlo simulations, and confirmed that the data could be explained well.

counts s⁻¹ keV⁻¹

See Odaka et al. (2018) NIM-A, 891, 92

Nuclear Inst. and Methods in Physics Research, A 891 (2018) 92-105

Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by *Hitomi*'s measurement in a low Earth orbit

Hirokazu Odaka ^{1,2,*}, Makoto Asai ³, Kouichi Hagino ⁴, Tatsumi Koi ³, Greg Madejski ^{1,3}, Tsunefumi Mizuno ⁶, Masanori Ohno ⁵, Shinya Saito ⁷, Tamotsu Sato ^{8,9}, Dennis H. Wright ³, Teruaki Enoto ^{10,11}, Yasushi Fukazawa ⁵, Katsuhiro Hayashi ^{9,12}, Jun Kataoka ¹³, Junichiro Katsuta ⁵, Madoka Kawaharada ⁹, Shogo B. Kobayashi ¹⁴, Motohide Kokubun ⁹, Philippe Laurent ^{15,16}, Francois Lebrun ¹⁵, Olivier Limousin ¹⁶, Daniel Maier ¹⁶, Kazuo Makishima ¹⁷, Taketo Mimura ¹³, Katsuma Miyake ⁸, Kunishiro Mori ⁹, Hiroaki Murakami ⁸, Takeshi Nakamori ¹⁸, Toshio Nakano ², Kazuhiro Nakazawa ^{8,19}, Hirofumi Noda ^{20,21}, Masayuki Ohta ⁹, Masanobu Ozaki ⁹, Goro Sato ⁹, Rie Sato ⁹, Hiroyasu Tajima ²², Hiromitsu Takahashi ⁵, Tadayuki Takahashi ⁹, Shin'ichiro Takeda ²³, Takaaki Tanaka ¹⁴, Yasuyuki Tanaka ⁶, Yukikatsu Terada ²⁴, Hideki Uchiyama ²⁵, Yasunobu Uchiyama ⁷, Shin Watanabe ⁹, Kazutaka Yamaoka ^{12,22}, Tetsuya Yasuda ²⁴, Yoichi Yatsu ²⁶, Takayuki Yuasa ², Andreas Zoglauer ²⁷

Summary

We investigated NXB produced by atmospheric neutrons and radioactivation, both of which have significant contributions to the entire NXB, using HXI onboard *Hitomi*.

1. Atromspheric neutron background:

- We found that the screened data rate of the Si-layers of HXI onboard *Hitomi* had a positive correlation with CR rate.
- We extracted the spectrum and spatial variations of the atmospheric-particle background.
- Comparing to estimates by our Monte-Carlo simulations, the extracted data could be explained well only with atmospheric neutrons.

2. Radioactivation background:

 The screened data of the CdTe-layer of HXI, which were dominated by radioactivation, were explained well with our Monte-Carlo simulations.

Back-up

- ▶ 宇宙X線背景放射(CXB) 変動しない
- ▶ 荷電粒子起源バックグラウンド(NXB)
 - 陽子起源成分(放射化)
 磁南極付近(南大西洋異常帯; SAA)
 通過後 < 10 ksの時間帯のみ激しい
 - 電子成分 磁南極・北極付近 (SAAやアメリカ上空)で強い
 - 中性子成分
 地磁気の大きさにより
 宇宙線強度が座標ごとに違う
 → 中性子の強度も座標分布
 - Albedo光子成分
 中性子と同じ座標分布

Hitomi

▶2016年2月 打ち上げ(4月 運用停止)▶地球を約90分で1周する

1-2. 軌道上バックグラウンド (§3)

- ▶ 宇宙X線背景放射(CXB)
 ・遠方の暗い点源放射の重ね合わせ
 → 等方的・定常
- ▶ 主な荷電粒子起源BGD (NXB)
 - 陽子成分
 - ・直撃→反同時計数で除去
 - ・検出器まわりの物質の放射化
 - ・南大西洋異常帯(SAA)を 通過した後に強い
 - ・地磁気に応じて場所依存
 - 電子成分
 - ・視野に侵入して検出器まで到達
 - ・SAAやアメリカ上空に強い領域あり

<mark>放射化, 電子</mark>の成分はよく理解され、 シールドで大幅に削減できる

(Hagino et al. 2018 submitted, Odaka et al. 2018 submitted)

IACHEC 2019@Shonan village

1-2. 軌道上バックグラウンド (§3)

▶ 主な荷電粒子起源BGD (NXB)

• 中性子成分

- ・シールドを透過し検出器まで到達
- ・強度が陽子と似た場所依存性
- Albedo光子成分
 - ・CXBより1桁程度弱いが、 寄与する可能性はある
 - ・中性子と同じ場所依存性

シールド性能が良い検出器では 中性子が卓越すると予想されているが、

BGDレベルの予測精度が悪い(Mizuno et al. 2010)

→本当に中性子が主か、本研究で 軌道上のデータから確認

Occlutation ~340 ks

DSSD 2-4 CountRate (Deadtime cor.) Latitude (degree) 30 0.14 20 0.12 -0.1 10 0.08 0 0.06 -10 0.04 -20 0.02 -30 50 -150 -50 100 150 -100 0 Longitude (degree)

DSSD 1 CountRate (Deadtime cor.)

CdTe CountRate (Deadtime cor.)

3-5. シミュレーションとの比較 (§6.11)

- ▶ HXIチームがすでに行ったシミュレーション結果 (Odaka et al. 2018 submitted) が本研究で得た相関成分データを説明できるか調べた
 - 中性子のみのシミュレーションを 相関成分データのカウントレートと合うようにスケール

全地食では20-30 keVが盛り上がる

DSSD 2, <mark>3</mark>, 4

DSSD 2-4 CountRate (Deadtime cor.)

DSSD 2-4 CountRate (Deadtime cor.)

3-4. NXBシミュレーションとの比較

- ▶ HXIチームがすでに行ったシミュレーション結果 (Odaka et al. 2018 submitted) が本研究で得た相関成分データを説明できるか調べた
 - 中性子のシミュレーションスペクトルのみスケールし
 全成分のカウントレートをデータと合わせた

全データ
 シミュレーション、Albedo光子を除く全成分(実線)
 赤点線:シミュレーション中性子のみ(点線)
 オレンジ:シミュレーション不変成分
 シミュレーションの相関成分をスケールし、データと
 シミュレーション全成分の5-120 keVカウントレートが合うようにした
 シミュレーションAlbedo光子を除いてもよく合う
 → シールドを漏れてくるAlbedo光子の強度が小さい?