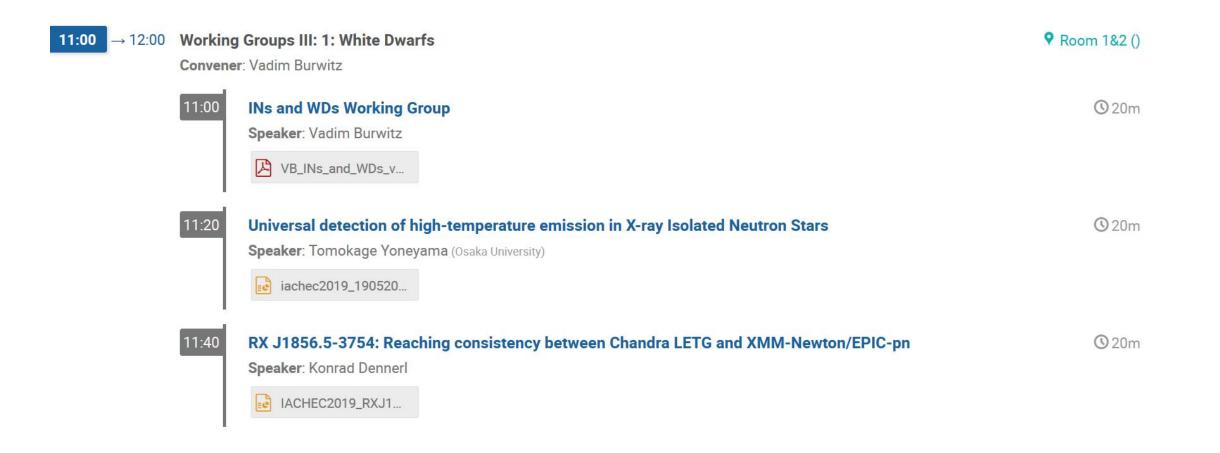


Status of the White dwarf (WD) and Isolated Neutron Star (INS) Working Group

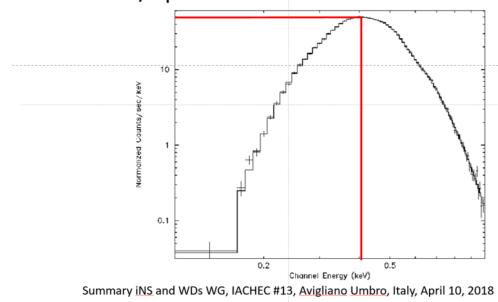
Vadim Burwitz (MPE) on behalf of the working group

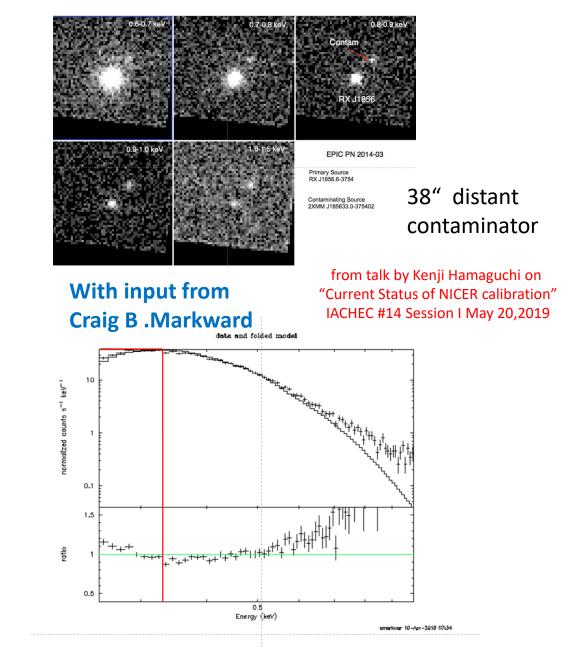
IACHEC #14,


May 23, 2019

Shonan Village, Japan

Presentations during Working group

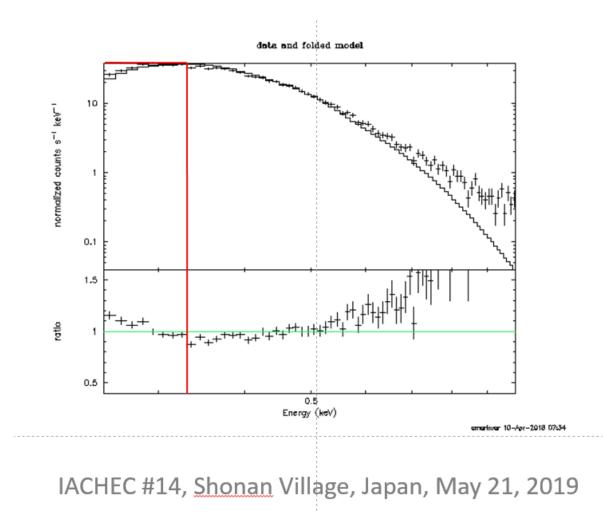



NICER prediction + Measurements

RXJ1856 and NICER

Model (VB) predicted countrate

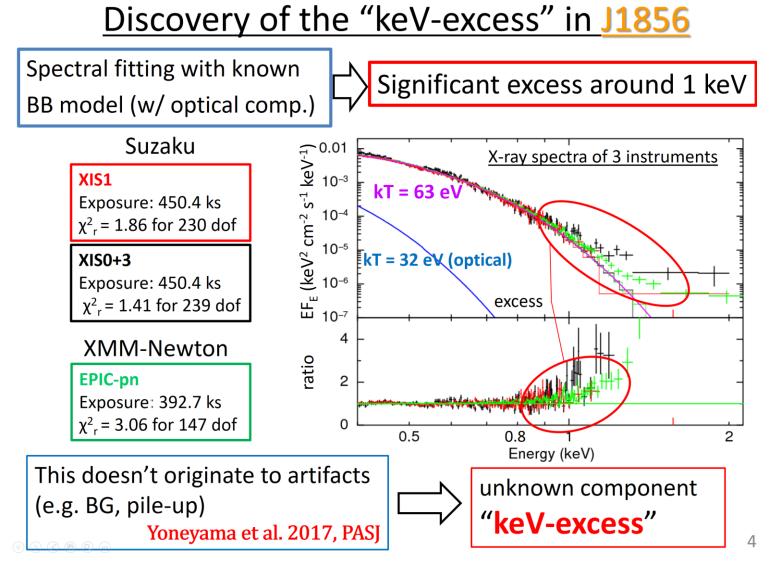
→ 13cts/s 0.1 -1.0 keV all detectors (FPMs) 0.24 cts/s per FPM



IACHEC #14, Shonan Village, Japan, May 21, 2019

NICER Results

from talk by Kenji Hamaguchi on "Current Status of NICER calibration" IACHEC #14 Session I May 20,2019


The norm difference will probably be fixed after including the effect of misalignments between modules in response.

Presentation by Tomokage Yoneyama:

Universal detection of high-temperature emission in X-ray Isolated Neutron Stars

Presentation by Tomokage Yoneyama:

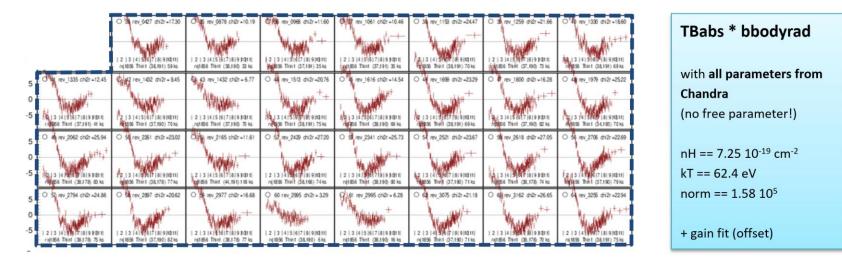
Universal detection of high-temperature emission in X-ray Isolated Neutron Stars

Summary

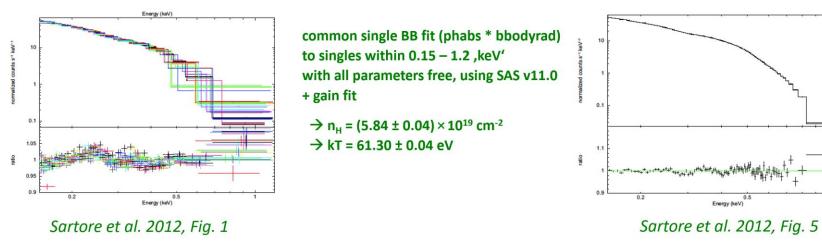
- XINSs have been considered to show single temperature blackbody emission
- We discovered the keV-excess in all the 7 XINSs
- **Dual BB model** (or BB+PL)reproduces the X-ray spectra
- Spectral shape are similar with Magnetars
 - \Rightarrow suggesting the same origin

supporting the "worn out" hypothesis

- Origin of the keV-excess could not be uniform
- For two of XINSs, canonical polar cap can explain
- If so, we will be able to determine M-R of an XINS
- NICER observation is now going on
- Background estimation is complicated and difficult

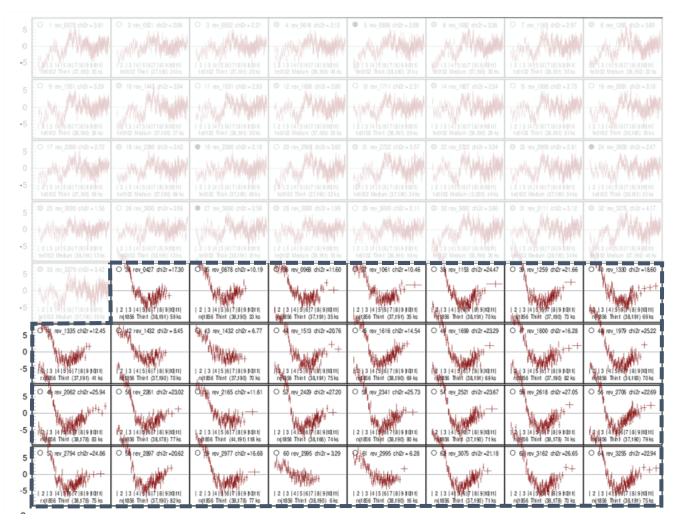


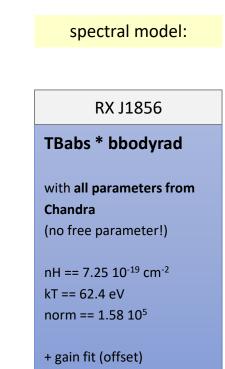
17


Presentation by Konrad Dennerl:

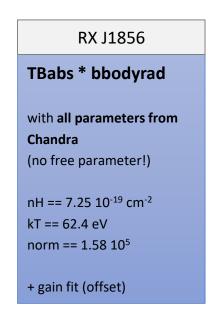
RX J1856.5-3754: Reaching consistency between Chandra LETG and XMM-Newton/EPIC-pn

RX J1856: XMM-Newton/EPIC-pn


→ necessity to adopt significantly different parameters and/or to introduce a second component

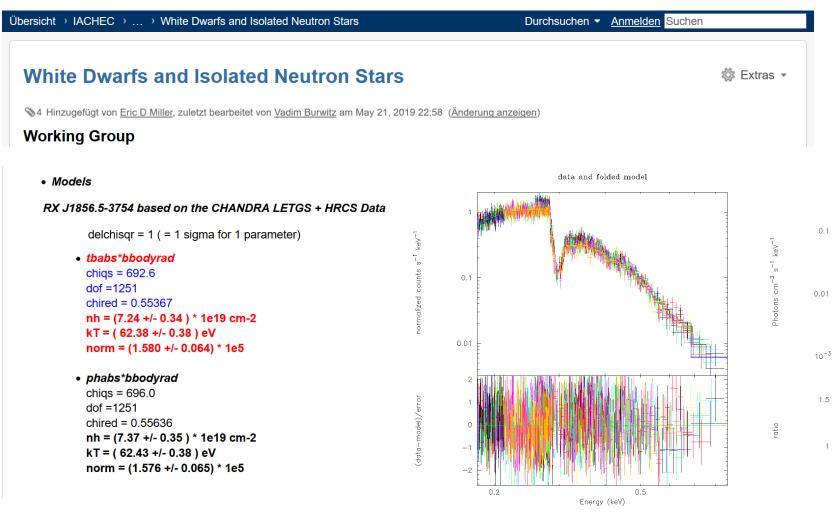


Residuals obtained with xmmsas RMF

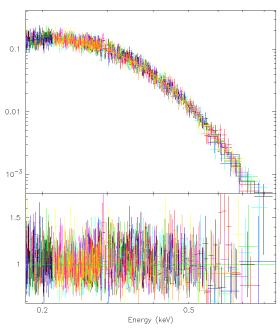


Residuals obtained with parameterized RMF

	O 1 rev_0375 chi2r = 1.28	O 2 rev 0521 dhi2r = 1.10	O 3 rev 0552 chi2r = 1.20	4 rev 0616 chi2r = 1.02	5 rev 0688 chi2r = 1.43	6 rev 1082 dti2r = 128	0 7 rev_1165 dh2r=1.49	8 rev_1265 dhi2r = 1.40					
5													
-5													
~													
5		10 rev_1443 dhi2r = 1.58	O 11 rev_1531 chi2r = 1.39	12 rev_1636 dhi2r = 1.21	O 13 rev_1711 chi2r = 1.15	14 rev_1807 dhi2r = 1.31	O 15 rev_1898 chi2r = 1.09	O 16 rev_2081 chi2r = 1.24					
0													
-5								2 3 4 5 6 7 8 9 10 11 teo 102 Thin1 (50,190) 35 ks					
5	O 17 rev_2380 chi2r = 1.40	18 rev_2380 dhi2r = 1.12	19 rev_2380 chi2r = 1.18	O 20 rev_2548 dhi2r = 1.41	21 rev_2722 chi2r = 1.31	22 rev_2722 dhi2r = 1.43	23 rev_2909 chi2r = 1.18	24 rev_3000 chi2r = 1.30					
0 -													
-5			2 3 4 5 6 7 8 9 10 1 1 fe0102 Thick (37,190) 69 ks	2 3 4 5 6 7 8 9 10 11 1e0102 Thin1 (37,190) 32 ks									
5		O 26 rev_3000 dhi2r = 1.19	27 rev_3000 chi2r = 1.17	28 rev_3000 dhi2r = 1.06		30 rev_3092 dhi2r = 1.48		32 rev_3278 dhi2r = 1.76					
0 -								-					
-5						2 3 4 5 6 7 8 9 10 11 1e0102 Medium (38,190) 36 ks		2 3 4 5 6 7 8 9 10 11 1e01 02 Medium (37, 190) 44 ks					
5	33 rev_3279 chi2r = 1.52	O 34 rev_0427 dhi2r = 1.13	O 35 rev_0878 chi2r = 1.39	○ 36 rev_0968 dhi2r = 1.14	O 37 rev_1061 chi2r = 1.29	O 38 rev_1153 dhi2r = 1.11	O 39 rev_1259 chi2r = 1.17	○ 40 rev_1330 chi2r=1.65					
	N/my/Apple/im	1											
-5	2 3 4 5 6 7 8 9 10 1 te0102 Medium (37,190) 39 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,191) 59 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thirn1 (38,190) 33 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (37,191) 35 ks	2 3 4 5 6 7 8 9 10 11 rx(1856 Thirn1 (37,191) 35 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,191) 70 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin1 (37,190) 73 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,191) 69 ks					
5	O 41 rev_1335 chi2r = 1.21	O 42 rev_1432 dhi2r = 0.97	O 43 rev_1432 chi2r = 1.01	O 44 rev_1513 dhi2r = 1.61	45 rev_1616 chi2r = 2.48	O 46 rev_1699 dhi2r = 1.31	O 47 rev_1800 chi2r = 1.35	O 48 rev_1979 chi2r = 1.32					
0	"##\\\\\\\\\\\\	+ WATH HALF			In the second second								
-5	2 3 4 5 6 7 8 9 10 11 rx 1856 Thint (37,191) 41 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (37,190) 70 ks	2 3 4 5 6 7 8 9 10 11 rx[1856 Thirt (37,190) 70 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,191) 75 ks	2 3 4 5 6 7 8 9 10 41 041856 Thint (38,190) 69 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,191) 69 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin1 (37,190) 82 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (34,193) 70 ks					
5	O 49 rev_2062 chi2r = 1.16	O 50 rev_2261 dhi2r = 1.48	O 51 rev_2165 chi2r = 1.13	O 52 rev_2429 dhi2r = 1.45	O 53 rev_2341 chi2r = 1.51	O 54 rev_2521 dhi2r = 1.45	O 55 rev_2618 chi2r = 1.18	9 56 rev_2706 dhi2r=220					
0													
-5	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin1 (38,178) 83 ks	2 3 4 5 6 7 8 9 10 11 rd 1856 Thin 1 (38,178) 77 ks	2 3 4 5 6 7 8 9 10 11 rx(1856 Thin1 (44,191) 118 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,166) 74 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thirn1 (38,190) 80 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (37,190) 71 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin1 (38,178) 74 ks	2 3 4 5 6 7 8 9 9 11 14 1856 Thin1 (37,190) 79 k5					
5	O 57 rev_2794 chi2r = 1.24	○ 58 rev_2897 dhi2r = 1.42	O 59 rev_2977 chi2r = 1.06	○ 60 rev_2995 dhi2r = 0.95	O 61 rev_2995 chi2r = 1.03	O 62 rev_3075 dhi2r = 1.16	O 63 rev_3162 chi2r = 1.75	O 64 rev_3255 chi2r = 1.28					
0				AN WARMAN									
-5	2 3 4 5 6 7 8 9 10(11) rx 1856 Thin1 (38,178) 75 ks	2 3 4 5 6 7 8 9 10 11 nd 1856 Thin 1 (37,190) 82 ks	2 3 4 5 6 7 8 9 f0 11 rd1856 Thin1 (38,178) 77 ks	2 3 4 5 6 7 8 9 10 11 rx 1856 Thin 1 (38,190) 6 ks	2 3 4 5 6 7 8 9 10 11 rd1856 Thin1 (38,190) 16 ks	2 3 4 5 6 7 8 9 10 11 rd 1856 Thin1 (37,190) 71 ks	2 3 4 5 6 7 8 9 f 0 1 1 rx 1856 Thin1 (38,178) 70 ks	2 3 4 5 6 7 8 9 10 11 rd(1856 Thin1 (38,191) 75 ks					
3	5	10 15	20	25 30	35 40	45	50 55	60					
2				0			→ °	0					
1													
0		$\langle \chi_{\rm v}^2 \rangle = 1.310$											



spectral model:



IACHEC WD +INS Wiki page

https://wikis.mit.edu/confluence/display/iachec/White+Dwarfs+and+Isolated+Neutron+Stars

All Available Chandra LETG + HRC-S Observations

	Cha	andra		Search Results															
	X-ra	ay Center	New Search	<u>Search Results</u> <u>Retrieval List</u> <u>Help</u>															
View Observation Information Add Products to Retrieval List Secondary package Chandra Data Archive Select all Unselect all Custom selection															Archive				
Select	Row	Seq Num 🜩	Obs ID 🔶	Instrument	\$ Grating \$	Appr Exp 🗢	Exposure \$	Target Name 💠	<u>PI Name</u> \$	<u>RA</u> \$	Dec	Status +	Data Mode	♦ <u>Exp Mode</u> ♦	Avg Cnt Rate	Evt Cnt 🗧	Start Date	Public Release Date	◆ Proposal
		1 500000	113	HRC-S	LETG	50.0	55.14	RX J1856.5-3754	Predehl	18 56 35.30	-37 54 34.40) archived			45.95	2533819	2000-03-10 07:54:08	2001-04-28 09:30:00	01500003
		2 500285	3380	HRC-S	LETG	170.0	164.7	RXJ1856.5-3754	Tananbaum	18 56 35.30	-37 54 34.40) archived			56.44	9295025	2001-10-10 05:05:24	2001-11-09 09:00:00	02508062
		3 500285	3381	HRC-S	LETG	170.0	169.31	RXJ1856.5-3754	Tananbaum	18 56 35.30	-37 54 34.40) archived			58.90	9972590	2001-10-12 19:18:22	2001-11-09 09:00:00	02508062
		4 500285	3382	HRC-S	LETG	100.5	97.72	RXJ1856.5-3754	Tananbaum	18 56 35.30	-37 54 34.40) archived			67.31	6577104	2001-10-08 08:17:45	2001-11-09 09:00:00	02508062
		5 500285	3399	HRC-S	LETG	9.5	9.25	RXJ1856.5-3754	Tananbaum	18 56 35.30	-37 54 34.40) archived			49.64	459240	2001-10-15 11:46:02	2001-11-09 09:00:00	02508062
		6 502023	15293	HRC-S	LETG	90.0	91.23	RX J1856.5-3754	Predehl	18 56 35.30	-37 54 34.40) archived			54.04	4929887	2013-06-12 14:28:42	2013-06-20 05:23:57	14500050
		7 590518	14418	HRC-S	LETG	30.0	29.96	RXJ1856.5-3754	Calibration	18 56 35.30	-37 54 34.60) archived			60.24	1804865	2013-10-01 05:02:27	2013-10-03 05:23:55	14500075
		8 503147	21693	HRC-S	LETG	86.0		RX J1856.5-3754	Predehl	18 56 35.30	-37 54 34.40) unobserved	L				2019-06-13 00:00:00		20501028
		9 503147	21896	HRC-S	LETG	86.0		RX J1856.5-3754	Predehl	18 56 35.30	-37 54 34.40) unobserved	l l				2019-07-18 00:00:00		20501028

Two new GTO observations, each 86 ksec long, are planned for June 13, and July 18 this year in the context of calibrating eROSITA

80 ksec **eROSITA** calibration observation planned **Sept. 13, 2019** for a June 20/21 Launch

Status of INs and WDs Working Group

• No work done on white dwarfs in the last year.

Isolated Neutron Stars

- NICER study of spectra triggered the search for an explanation to understand the hard component it sees: → possibly ¾ keV sky background contribution.
- Tomokage Yoneyama : merged spectra EPIC-pn spectra of INs, and proposes a physical explanation of hard component
- Konrad Dennerl: using Chandra LETGS RXJ1856 model and 1E0102 IACHEC model was able to determine a time dependant parametrised EPIC-pn RMF below 2 keV.
- Work to do!!
 - Check in more detail the source of the hard component in RXJ1856
- New observations \rightarrow Chandra / eROSITA

