Cross-calibration Effects in Modeling X-ray Spectra from Accreting Sources

Javier García

California Institute of Technology & Remeis Observatory, Germany javier@caltech.edu

14th IACHEC Meeting Shonan Village, Tokio, Japan May 21, 2019

But this is still a Cartoon Picture!

We still don't know:

- The origin and geometry of the corona (base of a jet, extended hot plasma, disk evaporation?)
- Structure and geometry of the accretion disk (degree of truncation, vertical extension?)
- Illumination pattern of the disk (extreme beaming due to GR, uniform illumination, ionization gradients?)

The Reflection Code XILLVER

- Solves the Radiation Transfer equation for every energy, angle, and optical depth
- This requires large number of iterations (~Tau_max^2)
- Solves the ionization balance using the XSTAR routines —> More iterations!
- Includes the most complete and updated atomic data for inner-shell transitions
- Includes Comptonization within the disk -> CPU intensive

García & Kallman (2010)

XILLVER: The Fe K Emission Complex

García et al. (2013)

XILLVER: More than Iron

Relativistic X-ray Reflection

<u>**RELXILL:</u>** Relativistic reflection model that combines detailed reflection spectra from **xillver** (García & Kallman 2010), with the **relline** relativistic blurring code (Dauser et al. 2010).</u>

http://www.sternwarte.uni-erlangen.de/research/relxill/

But, we work with a few assumptions

RELXILL: Assumptions & Issues

- Assumes Rin = Risco to measure spins.
- Can't fit both Rin and spin (can we?)
- Emissivity profile: what's the right shape?
- Lamppost Geometry
- Degeneracies: incl. vs spin, Afe vs spin, etc.
- Single ionization vs. gradients
- High-density Plasma Effects

The HID of GX 339-4

GX 339-4: Reflection Signatures

Ratio to a power-law model shows the signatures of reflection

Disk and Corona Evolution

Simultaneous fit of the **RELXILL** model to a 77 million count **RXTE** spectra revealed changes in disk and corona.

GX 339-4: Detecting Geometrical Changes

These changes seem to be correlated...

García et al. (2015)

Controversy on the Disk Truncation

Large disagreement with other reflection spectroscopy results!

XMM Timing Mode vs. RXTE PCA

The XMM timing mode data shows a much narrower Fe K emission profile than the simultaneous RXTE data

Possibly due to uncertain PSF in XMM Timing Mode?

Spin and Inner Radius

- If the disk is truncated (Rin > Risco), then fitting with Rin=Risco will under predict the spin **Truncation Radius** 1.25 R_G $3 R_G$
- Conversely, if Rin is desired largest possible truncation
- We can't measure both $\frac{1}{2}$ 0.4 spin and Rin, can we?
- Typically very loose constraints

Connection between Rin and AFe

Fixing the Fe abundance to its Solar value resulted in poor fits with $\chi^2 \sim 10$

A truncated disk with Solar abundance produces an Fe K line similar to an over-abundant disk reaching the ISCO

García et al. (2015)

The Problem of the Fe Abundance

Iron abundance determinations using reflection spectroscopy from publications since 2014 tend to find a few times the Solar value! WTF? (Why The Fe?)

Possible High-Density Effects

NuSTAR vs. Swift Below 5 keV

Be X-ray Binary GRO J1008-57

Line Shape and Continuum Slope

Is it dependent on the source's count rate?

1.5 1.4 + + NuSTAR/FPMB 1.3 1.4 + + XMM-Newton/pn (Timing mode) 1.2 1.2 1.1 1.0 0.9 4 CX 339-4 (Wang et al.) 0.8 2 4 10 20 4

XMM (TM) vs. RXTE

- 2009 Outburst: High count rate
- Very different Fe K line profile: XMM looks narrower

XMM (TM) vs. NuSTAR

- 2015 Outburst: lower count rate
- Significantly different continuum slope
- But good agreement between NuSTAR and Swift XRT

Discrepancies in the Continuum Slope

XMM-Newton Timing Mode vs. NuSTAR has the largest discrepancies (as opposed to Swift/XRT)

Discrepancies in the Continuum Slope

But other detectors also can show this problem...

Very bright outburst ~0.5 Crab (Sep 1998).
Strong discrepancy in the continuum slope between ASCA/GIS and RXTE/PCA (ΔΓ~ 0.1)

(Connors et al., in prep.)

ASCA vs. RXTE Discrepancies

(Connors et al., in prep.)

RELXILL: Lamppost Geometry

Probe geometry and location of the primary source Low height implies enhanced irradiation of the inner regions

RELXILL: Emissivity Profile

Large reflection fraction predicted by the lamppost model, for low heights...

...But also if ionization gradients in the disk are considered.

Kammoun et al. (2019)

Emissivity Profile on XTE J1752-223

Inclination from the lamppost model consistent with radio jet determinations of *i* < 49 deg (Miller-Jones et al. 2011).

García et al. (2018b)

Conclusions

- The state-of-the-art atomic data and reflection modeling are allowing us to impose tight constraints on important parameters such as spin, inclination, and Fe abundance (among other important parameters).
- Biggest calibration issues for reflection spectroscopy are:
 - (i) Discrepancies in the shape of the Fe K emission complex (e.g. XMM TM)
 - (ii) Discrepancies in the slope of the continuum (e.g., XMM, NuSTAR, XRT,..)
 - (iii) Uncertainties in the spectral shape at low energies (i.e., NuSTAR low energy tail?)
- Requirements in slope calibration depend on S/N. Ideally, we wish ΔΓ<0.01 (or whatever it is for FPMA/FPMB), and systematics ~0.01 %
- Flux calibration between instruments is relatively unimportant.

Understanding the Model Systematics

Bonson & Gallo (2016): Relatively large uncertainties in recovering fundamental parameters

Choudhury et al. (2017): Uncertainties are highly dependent on the initial values, proper spectral binning, and minimization methods!

RELXILL: Radial Ionization Gradients

If the lamppost model is accepted, we must then consider the possibility of large ionization gradients in the radial direction.

The profile of the gradient will depend not only on the illumination (prescribed by the lamppost) but also on the density profile, which is not well known.

RELXILL: Radial Ionization Gradients

A much more complex Fe K emission profile is expected —> Soft energies are also affected

RELXILL: Radial Ionization Gradients

But so far, no real observations have been fitted with this model (relxill_ion). It appears that most sources agree with a single ionization zone, which points to a very concentrated and focused illumination —> Extreme cases are the brightest!

Future Reflections

High sensitivity and low background at hard energies are crucial to observe reflection. NuSTAR is our best resource, but HEX-P will do a lot better!

•

