

XMM-Newton Calibration Status Update

Michael Smith, ESAC

14th IACHEC, Shonan Village Center, 20-23 May 2019

ESA UNCLASSIFIED - For Official Use

Outline

1. Recent calibration file releases

	XMM-CCF-REL-
 OM photometry: update of time-dependent sensitivity degradation 	356
•EPIC-pn energy scale:	
 Long-term CTI and quiescent background gain correction 	358
 Long-term CTI for Small Window and Large Window modes 	366 & 367
 Rate and energy dependent PHA correction for Timing Mode 	369
 Astrometry: time variable boresight update 	361
 EPIC-MOS energy scale: update of gain and CTI 	363 & 364

2. On-going calibration topics

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 2

+

= II 🛌 == + II 💻 🚝 == II II == == 💷 💵 II == II == 🕷

QBGC: (1) fit to measured CTI -> LTCTI correction

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 3

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 4

- Dependency of the EPIC-pn energy scale on the quiescent particle background rate: quiescent background-dependent gain (QBG)
- Time-dependent QBG correction implemented in SAS 17 (June 2018)
- QBG correction decoupled from the long-term CTI correction → XMM-CCF-REL-358 (Oct 2018). Calibrated for FF and EFF modes.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 5

•

- Dependency of the EPIC-pn energy scale on the quiescent particle background rate: quiescent background-dependent gain (QBG)
- Time-dependent QBG correction implemented in SAS 17 (June 2018)
- QBG correction decoupled from the long-term CTI correction → XMM-CCF-REL-358 (Oct 2018). Calibrated for FF and EFF modes.

PN: Energy Scale for Window Modes

PN Large and Small Window Modes long-term CTI correction:

- Derivation more problematic than for Full Frame Mode
- Very sparse sample of CalClosed exposures in window modes
- Use other data to derive LTCTI behaviour:
 - o Fe-Ka emission from AGN
 - o Cu-Ka fluoresence
 - o Calibration released: XMM-CCF-REL-366 & 367 (2019)

European Space Agency

See Ivan Valtchanov's presentation in Detectors & Background working group

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 7

PN: Rate & Energy Dependent PHA Correction

Calibration update to the rate-dependent PHA correction for PN Timing Mode

This new correction builds on that of Guainazzi et al. (2013, 2014):

- Derived from a significantly larger sample (~ 150 sources)
- In addition to the instrumental edges at Si-K (1.8 keV) and Au-M (2.2 keV) now includes * high energy data point at Au-L (11.9 keV)
- Details in XMM-CCF-REL-369 (Migliari et al. 2019)

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 8

= II 🛌 :: 🖛 🕂 II 🗮 🚝 = II II = = : :: 🖬 🛶 🕼 II = :: :: :: :: ::

PN: Rate & Energy Dependent PHA Correction

OM: Release of SUSS4.1

Release of the Serendipitous UV Source Survey v4.1 (the "OM Catalogue"):

- Version 4: SUSS4.1, released in December 2018 (available via XMM XSA)
- All public observations up to July 2017
- Full reprocessing with SAS 17:
- 8.18x10⁶ detections of 5.5x10⁶ unique sources, from 9749 XMM-Newton pointings
- 4.45x10⁶ detections with UV data (3.05x10⁶ unique sources)
- Source variability from multiple pointings (1.04x10⁶ sources observed > once)
- 82% of cleanest, point-like OM sources have a match in GAIA DR2 catalogue
 - 98% of those are within 2", median offset 0.45"

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 11

Outline

European Space Agency

1. Recent calibration file releases

	XMM-CCF-REL-
•OM photometry: update of time-dependent sensitivity degradation	356
•EPIC-pn energy scale:	
 Long-term CTI and quiescent background gain correction 	358
 Long-term CTI for Small Window and Large Window modes 	366 & 367
 Rate and energy dependent PHA correction for Timing Mode 	369
 Astrometry: time variable boresight update 	361
 EPIC-MOS energy scale: update of gain and CTI 	363 & 364

2. On-going calibration topics

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 12

+

*

OM: Grism t-Dependent Sensitivity Correction

OM is subject to time-dependent sensitivity degradation	Year	UV_Grism	V_Grism
correction for visible + UV filter ata implemented in 2006	2000	1.00	1.00
	2002	1.01	1.01
	2004	1.02	1.02
orrection for V and UV grism data ill be released soon:	2006	1.04	1.02
	2008	1.05	1.03
	2010	1.07	1.04
OM_GRISMCAL_0005.CCF	2012	1.08	1.04
vith SAS 18)	2014	1.10	1.05
	2016	1.12	1.06
	2018	1.13	1.07
	2020	1.15	1.07

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 13

*

RGS: A_{eff} Correction Update

- Evidence for a systematic change in time in the RGS1 to RGS2 flux ratios
- Corrected through epoch and energy dependent model (RGSn_EFFAREACORR CCFs)
- Updated correction with improved algorithm and validity range \rightarrow to be released soon

For each 0.05 Å bin: t<0.538 $P_1 + \left(\frac{t}{0.538}\right)P_2$ 0.538 $\leq t<1.408$ $P_1 + P_2 + P_6 + \left(\frac{t-0.538}{0.870}\right)P_3$ 1.408 $\leq t<2.112$ $P_1 + P_2 + P_3 + P_7 + P_8 + \left(\frac{t-1.408}{0.704}\right)P_4$ 2.112 $\leq t<2.816$ $P_1 + P_2 + P_3 + P_4 + P_7 + P_8 + \left(\frac{t-2.112}{0.704}\right)P_5$ 2.816 $\leq t<3.516$ $P_1 + P_2 + P_3 + P_4 + P_5 + P_7 + P_8 + \left(\frac{t-2.816}{0.700}\right)P_6$

+

J. Kaastra, C. de Vries & J.W. den Herder, 2019

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 14

RGS: Changing A_{eff}

RGS 1

•

RGS 2

RGS: Changing A_{eff}

Evidence for decreasing effective area

Possible instrumental causes:

- Increase in the thickness of the C_8H_8 contamination layer \pmb{X} very different wavelength dependence
- Increase in the thickness of the O layer
 X would require an increase of 300 nm
- Mismatch in the PI selection regions
 X would imply an unrealistic error in gain

 \rightarrow work in progress...

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 16

RGS: Contamination Monitoring

•

MOS: Contamination Monitoring

•

PN: Stability Monitoring

Details in R. Saxton, 2019, XMM-SOC-CAL-TN-0212

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 19

+

Cross Calibration Status

Instrumental flux ratios derived from a set of ≈ 120 observations in the XMM-Newton Cross-Calibration Database.

- MOS1 / pn:
 - $\approx 1.00 (E < 0.54 \text{ keV})$
 - $\circ \approx 1.05 (E > 0.54 \text{ keV})$
- MOS2 / pn:
 - $\circ \approx 1.03 (E < 0.54 \text{ keV})$
 - $\circ \approx 1.08 (E > 0.54 \text{ keV})$
- MOS / pn above > 4 keV: ≈ 1.1
- RGS / pn: From 1.05 to 0.98 with increasing E

•

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 20

Cross Calibration Status

Instrumental flux ratios derived from a set of ≈ 120 observations in the XMM-Newton Cross-Calibration Database.

- MOS1 / pn:
 - $\approx 1.00 (E < 0.54 \text{ keV})$
 - o $\approx 1.05 (E > 0.54 \text{ keV})$
- MOS2 / pn:
 - $\circ \approx 1.03 (E < 0.54 \text{ keV})$
 - $\circ \approx 1.08 (E > 0.54 \text{ keV})$
- MOS / pn above > 4 keV: ≈ 1.1
- RGS / pn: From 1.05 to 0.98 with increasing E

The CORRAREA MOS / pn correction is currently being recalibrated:

Applies an empirical A_{eff} correction to the EPICs.

See talk by Christian Pommranz in Calibration Methods session.

•

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration Status Update | M. Smith | 14th IACHEC, Shonan Village Center, 20-23 May 2019 | Slide 21

▋▶▖\$\$\$ ▀ ┿ ▋▋ ▀ ≔ こ ▋! ▋▌ ニ こ \$\$ ▄ ◙ ▋▌ ニ \$\$ ▌ ₩ \$

