Calibration Status of Hard X-Ray Modulation Telescope (Insight-HXMT) Mission

LI Xiaobo on behalf of HXMT team Institute of High Energy Physics, CAS May 20-23, 2019 14th IACHEC meeting

11:00, June 15th, 2017, Jiuquan

Outline

1. Introduction of the Insight-HXMT

- Payloads
- Observation Modes

2. Calibration Status of HXMT mission

- Energy gain and resolution
- ARF
- Background model

3. Summary

1. HXMT introduction

- > Launched at Jiuquan on June 15. 2017
- Designed lifetime: 4 years
- Orbit: circle, 550 km orbital period: ~96 mins orbital inclination: 43°

> Instruments:

HE : 5000cm², 20-250keV 18 NaI/CsI phoswich ME: 952cm², 5-30keV 1728 Si-Pin LE : 384cm², 1-15keV 96 SCD

1.1 Field of View

Y/degree

LE: 3.2 °×12 °

Energy resolution: <192eV@5.9keV Time resolution: 1 ms

HE: 2.2 °×11.4 °

Energy resolution: 17.3%@60keV Time resolution: 2 us

ME: 2 °×8 °

Energy resolution: 3kev@20keV Time resolution: 276 us

Point spread function (PSF) for 15 HE detectors with small FOV

4

1.2 Observation Modes

- Pointing Observation:
 - Spectrum
 - Light Curve
- Small Area Scan:

A square area of 14*14~20*20

- Scan radius: 7~10 degree
- Scan velocity: 0.01, 0.03, 0.06 deg/s
- Scan step: 0.1~1 degree
- Complete scan time: 2 hours ~ 5 days
- Galactic Plane Scan
 - ~ 1/3 of total observation time

Galactic Plane: (20°*20°)*18 + (20°*20°)*4

1.2 Observation Modes

- **GRB Mode:** designed for HE
 - In this mode, the high voltage of PMT is reduced, so that the measured energy range of CsI goes up to 0.2-3 MeV.
 - Unique high-energy gamma-ray telescope to monitor the entire GW localization area and the gamma-ray counterpart, with the large collection area (~1000 cm²) and microsecond time resolution.
 - ~ 30-40% of the observation time: during Galactic Plane Scan and earth occultation of Point observations

Working Mode	Nal energy band (keV)	CsI energy band (keV)	Detector Setting
Regular mode	20-250	40-600	Normal HV
GRB mode	100-1250	200-3000	Lower the PMT HV, turn off the AGC

2. Current Status of HXMT Mission

- 1. Energy gain and resolution
- **2.** ARF
- 3. Background model
- 4. Some spectrum results of simultaneous observations with NuSTAR

2.11 HE/NaI Energy gain calibration

 The background of HE is dominated by internal activation effects. Prominent background lines due to activation of iodine by cosmic and SAA protons are seen at 31, 56, 67 and 191 keV. These four lines can be used as the energy scale calibration combined with the ground calibration results.

• 191keV line will be used to monitor the stability of energy scale month by month.

2.12 HE/NaI energy resolution Cal.

• Deliquescent Nal on ground made the energy resolution worse. After 3 month in orbit, the resolution has kept almost same.

AGC @59.5keV before launch

de+TD-1	201512	201612	201705	20170	20170	20170	20170	20171	20171
actin.	23₽	21₽	07₽	622₽	717₽	828₽	920₽	1010	205₽
HED-1₽	15.300	17.350	17.480	18.460	18.720	17.770	17.69₽	17.850	17.680
HED−2+	14.380	18.490	19.47@	20.970	17.790	17.49₽	17.76₽	17.940	17.74@
HED−3+	14.600	16.87₽	16.97#	18.340	17.89÷	17.59₽	17.46₽	17.350	17.41@
HED-4₽	14.490	17.41@	18.130	19.54₽	19.49₽	17.85₽	17.75₽	17.87+	17.94₽
HED-5₽	14.71@	18.130	18.460	19.920	17.910	17.81@	17.77₽	17.49₽	17.90₽
HED−6+	14.97@	17.09₽	17.730	18.680	18.180	17.160	17.280	17.04+	17.300
HED-7≁	14.390	21.590	23.82+	27.060	21.720	19.46+	19.47₽	19.26+	19.70₽
HED−8+	14.780	16.120	16.01@	16.940	16.860	16.67#	16.660	16.64+	16.740
HED−9₽	15.900	17.130	17.460	18.210	18.260	17.90₽	17.75₽	18.050	18.130
HED-104	14.77@	18.560	18.76₽	20.210	20 . 53₽	19.930	18.87₽	18.89#	19.00
HED-11₽	14.170	15.340	15.590	16.200	16.420	15.92+	15.83₽	15. 70₽	15 . 98₽
HED-12₽	14.42₽	16.080	16.350	16.890	16.830	16.77#	16.57₽	16.67#	16.630
HED-134	14.830	16.07#	16.360	17.280	17.09₽	16.92+	16.880	17.07#	17.010
HED-14₽	14.390	15.140	14.940	16.080	16.180	16.100	16.110	15.84+	16.08+
HED-15₽	14.51@	15.680	15.980	16.870	16.93¢	16.670	16.62₽	16.82#	16.760
HED-16₽	14.09#	15.850	15.91@	16.770	16.970	16.69₽	16.51~	16.31+	16.630
HED−17₽	14.26+2	16.92₽	16.92₽	18.280	17.930	17.39+	17.49₽	17.43+	17.69+
HED-184	14.44*	15.45₽	15.66+	16.640	16.650	16.49₽	16.45	16.51+	16.650

On ground: $R(Ch) = \frac{a + b * Ch + c\sqrt{Ch}}{Ch}$

In orbit:

The energy resolution for 31keV will be used to estimate the energy resolution (kres) in orbit.

2.13 Temperature and HV of HE

- The temperature of HE is very stable in orbit: 0.6%-0.7%.
- Most High Voltage of the HE is decreased, only two has increased, water vapor has gradually evaporated from the Nal.

Cas A was used to calibrate the gain and resolution of LE.

obsID₽	StartTime(U	MJD:₊	Exp₊	Eff.	Sun₊	÷
	TC) ₊	Days₊	Time₽	Time(s)₊	Angle₽	
32601 ~	2017/07/08+3	27.0261 ₽	100ks.	23647.	85⊷	÷
32603 ₽	2017/07/15		50ks₽	11739 ~	88 ⊷	÷
32604 ₽	2017/11/06	145.083 ₽	50ks₽	15866 ₽	123	÷
32605 ₽	2017/11/07		50ks₽	16260 ~	123 ,	÷
32606 ₽	2018/01/31	239.144	200ks.	45815⊷	81 + ²	÷
32607 ₽	2018/02/17		50ks₽	12051 ~	7 2 ⊷	÷
32608 ₽	2018/07/30	423.898 ₽	50ks₽	22133.	96⊷	÷
32609 ₽	2018/08/20		100ks.	25669 ₽	103 ,	÷
32610 ₽	2018/08/24+3		100ks.	29972 ~	105 ₽	÷
32611	2018/09/29+3	471.333 ₽	20ks₊	5361 <i>e</i>	120 ¢	÷

obsID₽	StartTime(U	MJD:	Exp↩	Eff.	Sun⊷	•
	TC)₊	Days₽	Time₽	Time(s)₊	Angle₽	
32612.0	2018/10/26	499.045 ₽	100ks.	33467₽	124~	•
32613 ¢	2018/11/12+2	516.278	100ks.	21920↩	121 ~	4
32614	2018/12/01	542.17 ₽	114ks₽	33562.0	114 ~	4
32615.	2018/12/15		100ks.	39547₽	108	*
32616	2019/01/06	577₽	100ks.	30711 ₽	96⊷	*
32617 *	2019/01/17~		100ks.	26667.₀	89 + ²	4
32618	2019/02/17+2	613.142 ₽	100ks.	39186 ₽	72⊷	4
30201 +	2017/12/28	196.837 ~	30ks₽	19550 ₽	101 ~	*
30202 ₽	2017/12/29+		15kse		100 ~	*
30203 ₽	2018/01/18+2	217.634	40ks₽	15960 ₽	89 ₄ [□]	*

2.15 LE: energy gain calibration

2.16 LE: energy resolution calibration

- Jointly fit the Si, S, Fe width of XMM and LE in different time to get the extra broadening of three lines.
- The energy resolution has changed compared with the pre-launch calibration. A extra broadening is required to spread the resolution underground.
- A function (Sigma(eV) = A*E+B) was used to fit the extra broadening using the 3 lines.

2.17 Cas A

2.2 ARF calibration

- Crab nebular was used to calibrate the ARF(NH=0.36, Norm=9.71, index=2.11)
- The dashed line is the simulated effective areas of LE.

2.3 HE Background

Delayed BKG (dominant): Activated by Cosmic ray proton, SAA proton (> 100 MeV)

Prompt BKG: Cosmic ray proton, Albedo Gamma-Ray, CXB

2.3 ME background

Prompt BKG: CRP(dominant), CXB, Albedo Gamma-Ray,

2.3 LE background

Particle BKG: CRP (dominant > 7 keV) Diffused BKG:

GXB/CXB (dominant < 7 keV)

2.4 Background Model for HE/ME/LE

The three telescopes (HE, ME, & LE) can give correct estimation of the background.

For the observation of Galactic plane, the LE BKG at the low energy band (< 7 keV) is dominant by the diffused X-ray.

2.4 Diffused Background in Galactic Plane

Diffused background can be derived from the galactic plane scanning survey (1-6 keV)

cts/s

2.5 Crab nebular

Light Curve by HE, 30-150keV, 1.2%

2.5 Maxi J1820+070 (~4 Crab)

- Blue: NuSTAR
- No systematic error was added, 1% will be better.

2.5 Her X-1

 From other simultaneous fit with NuSTAR and Swift/XRT(Maxi J1535-571, Swift J0243.6+6124), we know the systematic error of calibration and background for HE/ME/LE is about:1%-2%.

3. Summary

- Insight-HXMT has worked smoothly for 700 days, and all the instruments work well.
- The gain and resolution are stable for HE and ME.
 They have been monthly monitored. Cas A was used to calibrate the gain and resolution of LE.
- The in-orbit calibration and the BKG estimation models have been confirmed and the systematic error of three payloads is about 1%-2%.
- Homepage: http://hxmt.org

Thank you!