

The Kronos Database of State-Selective Charge Exchange Cross Sections

Renata Cumbee

Patrick Mullen, Phillip Stancil, David Lyons, David Schultz

Charge Exchange -Observations

From Mullen et al., in Prep

Charge Exchange Process

 $X^{q+} + Y \rightarrow X^{q-1}(nl^{2S+1}L) + Y^+$

Produces highly excited, high charged state ions $X^{q-1}(nl^{-2S+1}L)$

•Cascade to lowest energy → Produces X-rays

CX & Thermal Emission

- X-ray emission from charge exchange produces a very distinct spectrum compared to thermal emission.
- With high resolution spectra, it is plausible to disentangle CX from thermal emission!

CX X-ray Emission Line Ratios (Spectra)

- Two steps are required to produce a CX X-ray emission spectrum:
 - 1)Calculate cross-sections
 - $\sigma_{nl(S)}(v)$
 - Highly dependent on ion, neutral target, and velocity
 - Not simple
 - 2)Radiative cascade
 - Transition probabilities (Einstein A Coefficients)
 - Transition Energies
 - More Simple (FAC, AUTOSTRUCTURE, etc)

Charge Exchange Cross Section

The *probability* of an electron to transfer from the neutral atom into a specific excited state (n, l, S) of the ion.

For charge exchange calculations:

- σ depends on the
 - **n** (principle quantum number)
 - I (orbital angular momentum quantum number
 - **S** (spin quantum number, He-like)
 - v (collision velocity)
- σ_{nls}(ν) is required to produce reliable theoretical CX X-ray emission spectra

"Effective area" that quantifies the likelihood of a scattering event to occur

CX Cross Sections ($\sigma_{n,l,s}$)

- Recommended Cross-sections for the n=6 quantum levels ٠
- Multi-channel Landau-Zener •
 - Statistical l-distribution •
 - Low energy l-distribution
- **Classical Trajectory Monte** Carlo
- Atomic Orbital Close Coupling
- Quantum Mechanical Molecular orbital Close Coupling
- Accuracy All available cross-sections for H-like and He-like CX collisions are implemented in **Kronos Database**

difficulty

ø

CX as a diagnostic

- CX is highly dependent on:
 - Ion stage (O⁸⁺, O⁷⁺)
 - Neutral target (H, He, CO₂)
 - Velocity of the collision

CX as a diagnostic

CX is highly dependent on:
Ion stage (O⁸⁺, O⁷⁺)
Neutral target (H, He, CO₂)

• Velocity of the collision

Benchmarking Theory to Experiments

Benchmarking Theory to Experiments

- Microcalorimeter detectors produce high-resolution spectra
 - Useful for benchmarking Theory

From Defay et al. (2013)

14th Meeiting for the International Astronomical Consortium for High Energy Calibration

Relative Intensity (arb. units)

Current CX Models and Databases

- ACX
 - Uses empirical formulae for CX cross-sections
 - Not velocity dependent
 - For use in XSPEC
- ACX2
 - Used in PyXSPEC
 - Uses MCLZ velocity-dependent cross-sections for H- and He-like ions
 - Uses ACX formulae for other cases
- SPEX-CX
 - Uses reliable cross-sections, when available in the literature
 - Uses scaling relations to estimate other cross-sections

Charge exchange Models

5/21/19

Kronos CX Database

O⁷⁺ Triplet of Star Forming Galaxies

5/21/19

Current CX Models and Kronos Database

• ACX

- Uses empirical formulae for CX crosssections
- Not velocity dependent
- For use in XSPEC
- ACX2
 - Used in PyXSPEC
 - Uses MCLZ velocity-dependent crosssections for H- and He-like ions
 - Uses ACX formulae for other cases

• SPEX-CX

- Uses reliable cross-sections, when available in the literature
- Uses scaling relations to estimate other cross-sections

• Kronos

- Database of n,l,S resolved cross-sections
- Cross-sections $\sigma_{nl(S)}(v)$
 - *Ions*: H- and He-like C, N, O, Ne, Mg, Al, Si
 - Neutrals: H, He, H_2 , H_2O , CO, CO_2 , N_2
 - *Collision Energies*: 0.01eV/u ~100 keV/u
 - Methods: AOCC, CTMC, MCLZ, QMOCC, Recommended
- Transition probabilities (Einstein A Coefficients)
- Transition Energies
- X-ray line ratios following radiative cascade

Limitations

- In comets, more ionization stages (other than H-like and He-like) are significant
- Multi-electron capture, in which 2 or more electrons is transferred can be significant for collisions with neutrals with more than 1 electron

Multi-electron Capture

Limitations

- In comets, more ionization stages (other than H-like and He-like) are significant
- Multi-electron capture, in which 2 or more electrons is transferred can be significant for collisions with neutrals with more than 1 electron
- Current theory needs to be benchmarked to experiment for a variety of collision energies
- MCLZ is relatively easy to calculate, but requires more approximations than QMOCC or AOCC.

Summary

- Kronos Database
 - H-like and He-like C, N, O, Ne, Mg, Al, and Si
 - H and He targets
 - 200-1000 km/s
 - QMOCC, AOCC, CTMC, and MCLZ methods
- Limitations
 - In comets, more ionization stages (other than H-like and He-like) are significant
 - Multi-electron capture, in which 2 or more electrons is transferred can be significant for collisions with neutrals with more than 1 electron
 - Current theory needs to be benchmarked to experiment for a variety of collision energies
 - MCLZ is relatively easy to calculate, but requires more approximations than QMOCC or AOCC.
- Some data available in AtomDB CX and SPEX packages

All data available in Kronos Database <u>https://www.physast.uga.edu/research/stancil-</u> <u>group/atomic-molecular-databases/kronos</u> Google search: UGA Stancil Kronos