The Effects of Atomic Data Choices on Calibration Uncertainty

Adam Foster Smithsonian Astrophysical Observatory

What we are and aren't talking about

Not discussing (but probably should!)
Calibration sources
Absorption of materials

Are discussing (but possibly shouldn't?)
Estimates of atomic data uncertainty
Using uncertainties in modeling

Variation in atomic data

What are the Uncertainties?

Approach	Pros	Cons	WHEN A USER TAKES A PHOTO.
Experimental Measurement	"Real" uncertainty	Difficult Limited data	THE APP SHOULD CHECK WHETHER THEY'RE IN A NATIONAL PARK
	Get real underlying data too	Expensive	SURE, EASY GIS LOOKUP. GIMME A FEW HOURS.
Delta of Literature Values	Reasonable estimate	Comparing apples and oranges	AND CHECK WHETHER THE PHOTO IS OF A BIRD.
	Fast (if literature exists)	Not always multiple calculations available	I'LL NEED A RESEARCH TEAM AND FIVE YEARS.
Comparison with Observations	Excellent data, unavailable in lab	Hard to extract fundamental uncertainties Limited datasets	
1 st Principle Calculations	"Real" uncertainty Correlation effects	Difficult Few results (so far!)	IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Add Uncertainties to AtomDB Machinery

- Supply input limits for uncertainties
- $C_{var} = C_{orig} * A$, where A is generated from a truncated Gaussian between $1-2\sigma < A < 1+2\sigma$.
- Tie together values from same term transitions (doublets affected similarly)
- Reduce collisional uncertainties at high T

Fe XXV

Uncertainties of order 10 % for strong transitions, higher for weaker

Significant Spectral Change

	CSTAT	Te (keV)	Abund
ATOMDB	3402.02	3.93 (-0.07,+0.04)	0.324 (009,+.006)
Aggarwal	3832.24	3.74 (-0.01,+0.02)	0.295 (006,+.008)
Si	3415.49	3.92 (-0.04,+0.06)	0.318 (008,+.008)

Production runs!

Parameter	sigma
Eff. Colln Str (dipole)	10%
Eff. Colln Str (other)	40%
Einstein A (dipole)	5%
Einstein A (others)	10%
CI Rates	10%
RR Rates	5%
DR Rates	30%
Satellite line intensity	20%
Autoionization	20%

There is an infinite parameter space to explore. I have started with these values, but they are **not** definitive in any way shape or form

Use non-equilibrium formats to separate out the ionization balance from the rest of the data.

Also performed one set with only the uncertainties on the collision strengths.

Production runs!

Parameter	sigma
Eff. Colln Str (dipole)	10%
Eff. Colln Str (other)	40%
Einstein A (dipole)	5%
Einstein A (others)	10%
CI Rates	10%
RR Rates	5%
DR Rates	30%
Satellite line intensity	20%
Autoionization	20%

There is an infinite parameter space to explore. I have started with these values, but they are **not** definitive in any way shape or form

Use non-equilibrium formats to separate out the ionization balance from the rest of the data.

Also performed one set with only the uncertainties on the collision strengths.

Fitting Perseus Data

Results!

Results 2

ACIS example

Simple 1keV plasma,

phabs*vnei

Abundance =1 for all elements 30 normalized counts s⁻¹ keV⁻¹ Tau = 1e13 (so actually equilibrium) 20 ACIS-I aimpoint response 10 Free O, Si, S, Fe, norm, nH 0 4 (data-model)/error 2 0 -2 0.01 10 0.1 1 Energy (keV)

43 of 100 runs produce cstat > 1200

Data can wander off to garbage quickly.

This is **2-hoursago** preliminary, not a result

BUT

Indicative of future issues to address?

Summary

- Atomic data errors are coming (eventually)
- This is an initial framework anticipating their arrival
- Suggestive of expected issues with using atomic data uncertainties

• Lots of work still to do!