

Characterization of a BSI sCMOS as a soft X-ray detector

14th IACHEC meeting, 2019

Wenxin Wang, Zhixing Ling, Chen Zhang NAO.CAS

Einstein Probe (EP) satellite

A mission for all-sky monitoring to discover and study high energy transients and variability in the soft X-ray band

Monitoring: 0.5-4 keV soft X-ray

Large Field of View: 3600 sq. deg.

Orbit: 600km

Instruments:

Wide-field X-ray telescope (WXT) Follow-up X-ray telescope (FXT)

Nominal lifetime: 3 +2 years (2022-)

Wide-field X-ray Telescope (WXT)

Wide-field X-ray telescope (WXT)

12 identical modules MPO Lobster-eye optics CMOS detector ~1700 cm². Field-of-view: 3600 sqr.deg. Spatial resolution: FWHM ~ 5' Band pass: 0.5-4keV Effective area: 3cm² @1keV WXT module

WXT Focal plane detector

WXT Focal plane detector:

12modules * 12cm * 12cm Band pass : 0.5~ 4keV

	Gas detector	МСР	CCD	micro calorimeter	
	ROSAT RXTE	Einstein Chandra	Chandra XMM- Newton	Suzaku Astro-H	
Energy resolution	20%	No	4% (200eV@5keV)	~eV	
Time resolution	us	us	S	ms	
Temperature			-100°C	~ mK	
Advantage & Disadvantage	Low cost, Large area, Ultrathin incident window	High spatial res., Low QE, Good time res.	Good energy res., High QE	Best energy res., Very high cost	4

2015: BSI sCMOS (GSENSE400BSI) in China

Number of pixels : 2048×2048 Pixel size : 11µm×11µm Epitaxial layer thickness : 3.6µm Frame rate : 48fps@STD

Photograph and physical structure of the GSENSE400BSI.

Compare CMOS and CCD

Parameter	G400 BI sCMOS	E2v CCD4240
Resolution	2k * 2k	2k * 2k
Pixel size	11 µm	13.5 µm
Fill factor	100%	100%
Response spectrum	200 – 1100 nm	270-1100 nm
Full well	> 120 ke- (~2k HG)	100 ke-
Noise	1.2 e-	3 e-
Dynamic range	96 dB	90 dB
Dark current	400 e-/pixel/s @20° 0.03 e-/pixel/s @-50° (@LDC)	250 e-/pixel/s@20°
Frame rate	48 fps @STD	~ 5 fps
PRNU	< 1%	
Power	<500 mW	~ 5 W

The sCMOS sensor architecture.

The image signals from the pixel array are digitized by a low-power ADC array. The digitized image signals are then read out through 8 low-voltage differential signaling (LVDS) channels.

Integrates all necessary controls, preamplifiers and digitization

> No charge transfer

high-speed readout ->Virtual cooling

> No deep cooling required

Block diagram of the GSENSE400BSI evaluation system.

X-ray imaging test

E 22 17.6 13.2 8.8 4.4 0 4.4 8.8 13.2 17.6 22 mm

X-ray image captured by the GSENSE400BSI.

A climate chamber.

Temperature: $-20^{\circ}C \sim 30^{\circ}C$

- Readout noise
- Dark current
- Energy resolution

Readout noise

Dark current

Dark current as a function of temperature.

X-ray spectrum

X-ray spectrum from the ⁵⁵Fe source at 20°C (Only single-pixel events). Energy resolution: 192 eV (3.3%) at 5.9keV.

Low-energy X-rays test

The spectrum from the low-energy X-rays test.

The schematic of the vacuum chamber setup.

Test with MPO

The corresponding focused image of the point spread function (PSF) of the MPO by integrating the response of the GSENSE400BSI.

