iachec boordinated Observation Working Group

Spring Report May 18th, 2021 Karl Forster nternational Astrophysical Consortium for High Energy Calibration

International Astrophysical Consortium for High Energy Calibration

Coordinated Observation Working Group

- The goal of this working group is to facilitate the coordination of calibration observations among operational observatories and the analysis and publication of the corresponding data.
- An annual cross-calibration observation of the quasar 3C 273 involving as many operational observatories as possible is undertaken in June each year.
- This working group also supports additional opportunities for coordinated cross-calibration observations between observatories.

coordinated observations working group

International Astrophysical Consortium for High Energy Calibration

Working Group meeting

- □ May 13th via zoom 15 attendees
- WG status
 - Communications dissemination of observing schedules
- 3C 273 observing campaign for 2021
 Cross-calibration analysis of 2015-2021 observations
 Additional cross-calibration opportunities
- □ IACHEC support for in-flight calibration of *IXPE* and *XRISM*
- 1ES 0229+200 potential cross-calibration target
 Proposal by Norbert Schartel & Felix Fuerst
- Action Items posted on wiki

coordinated observations working group

International Astrophysical Consortium for High Energy Calibration

WG status since 2019

- □ 60 subscribers to slack channel
- Annual coordinated observations of 3C 273
 - 2019 & 2020 with Chandra, INTEGRAL, NICER, NuSTAR, Swift, & XMM
 - Thanks to Josh Wing (CXC) for getting the ball rolling with Chandra visibility
 - Kristin advising a SURF student in analysis of 3C 273 data taken since 2015
 - An update to Madsen et al. (2017) AJ 153, 2

Communications

- No strong opinions about using slack channel or email list server
 - (what does the communication WG think?)
 - KF will set up a list server
- WG webpage <u>iachec.org/coordinated-observations/</u>

$_{\odot}$ IACHEC WG Wiki page

wikis.mit.edu/confluence/display/iachec/Coordinated+Observations

coordinated observations working group

International Astrophysical Consortium for High Energy Calibration

Additional cross-calibration opportunities

NuSTAR + XMM-Newton observations of the Crab Outilizing focused and stray-light NuSTAR observations

Leading to revised NuSTAR & XMM-pn effective area calibration

Madsen & Fuerst 2021 maybe presented at Sept IACHEC meeting? eROSITA calibration?
 Insight-HXMT plans to join future campaigns on Crab calibration

International Astrophysical Consortium for High Energy Calibration

coordinated observations working group

Observation scheduling information

- IVOA standards for target visibility and observatory schedules
 Protocols developed at ESAC Erik Kuulkers, Jan-Uwe Ness
 - www.cosmos.esa.int/web/vovisobs protocols
 - ObsVisSAP and ObsLocTAP IVOA endorsement expected this year
- Implemented by INTEGRAL, XMM-Newton, & Chandra
 Partial implementation by NuSTAR, Insight-HXMT, GAIA, and NOT
- Allows for client applications using the visibility and schedule information
- □ Example client: TOBY <u>integral.esa.int/toby/</u>

SCIENCE MISSIONS EUROPEAN SPACE AGENCY OF SCIENCE & TECHNOLOGY OF

DEFINITION OF TWO NEW INTERNATI

vovisobs_protocols

VOVisObs protocols + Home

IACHEC - Coordinated Observations WG – Spring report

6

eesa

International Astrophysical Consortium for High Energy Calibration

COWG google sheets

Information about calibration targets and upcoming observations

docs.google.com/spreadsheets/d/1EA_7c0J2c4kX62t-qoVDLXJiE0SkS8sqZiBjokJbUK/edit#gid=0

Request that WG chairs look at information and make additions/corrections

			.0 .00 123 -	Default (Ari.	. 10	• B I 4	A	1.4	A 18	23		4	• 16	. 9		60		<u>ه</u>	7 -	Σ.				
							1																	
n	ante	0	C	D	1	F	6	1 1	3.8	L.	M N D	6	Q R	5	T U	V V	8	Y	z	AA .	AB A	IC. AP	D AE	AF
	ycua									Cali	bration tar	get f	or:											
	•	ED link)			0	Observation within	1.97	-	(0 = n	of large	ated for calibr	ation,	p-prim	ery, si	second	lary)		c	alibra	rtion t	opic			
•	Target	type	Notes	J2000 RA	J2000 Dec	Cross-cal Lead	ASTROSAT	Hitomi	Insight-HXMT	DXPE	MAX0 NICER NUSTAR	RXTE	SRGIART-XC SRGIeROSITA	Suzaku	Swift XMM-Newton	XRISM	Effective Area	Vignetting	QE/gain	Timing	Contamination	Optics	Polarization	Coordinat
-4	Typho SNR	SNR		6.339700	64.140800										Y o		1		Y					
5	1ES 0033+595	AGN, BL Lac		8.968975	59.834497				1							P	Y							
	BPM16274	WD		12.515206	-52.137643			- 11	1.1															
7	TE 0102.2-7219	SNR	Simple stable the	16.005000	-72.031200		Y	V			Y		Y	0	ΥY	P	Y	Y	Y	1	1	Y		
	30.58	SNR		31.404300	64.828300		-		1.7		-		0				111	Y						
	PSR J0218+4232	Pulsar		34.526502	42.538157				1.5											τ.				
TQ.	1ES 0229+200	AGN, BL Lac		38.202500	20.288333				1.7		0				0		Y							Simultane
31	AWM7.	Galaxy cluster		43.634200	41.586100				1.1					0	0									
12	Perseus cluster	Galaxy cluster		49.946700	41.513100			Y	Y					Y	0	P	Y		Y					none?
12	HR1099	Star, RS CVn		54.197046	0.587760			Y							Y				Y		Y			
14	Abell 478	Galaxy cluster		63.336300	10.476400			- 11								P		Y						
15	NGC 1550	Galaxy cluster?		64.908004	2.409883											P					Y			
16	EX0 0422-085	Galaxy cluster		66.462580	-8.560690								0											
17	Capella	Star G3 III		79.172327	45.997991			Y							Ŷ	P			Y		Y	Y		
. 18	N132D	SNR (LMC)		81.259170	-69.644170		- 1	YY					0	0	ΥÝ	5								
19	AB Dor	Star, T-Tau		82.187048	-65.448691											p			Y					
20	Chala	SNR, nt, pulsar		83.633030	22.014470	KKM, FF	Y	Y	0		0. Y	0		0	ΥY	P	Y	Y		Y				Simultane
21	PSR 80540-69	Pulsar		85.045160	-69.331730															т				
22	zeta Orionia	Star		85.189694	-1.942570										0				Y					
23	40.0614+091	LMXB, ris		94.280400	9.136900																			
24	Abell 3395	Galaxy cluster		98.577556	-54.387906								Y											none

G	File Edit	View Insert	a ☆ ⊡ ⊘ Format Data	Tools Add-ons	Help Lastedit	was 4 hours ago					X	0
		100% -	\$ % .000	123 - Default (Ari.	+ 10 +	BISA	4. H == -	三、王、十、	₽ · 00 E E	-		
N24	•1 h									-		- A.
	A	1	c	p.	3	F	.0	8	1	5	ched	116
1	2021	Calibratio	on observatio	ons							unoa	міс
2	facility name	instrument na	ime		obs id	t min	t max			t expire	execution status	
		A CONTRACTOR OF				-						
3	Observatory	Instrument	Settings	Target	Observation ID	Start MJD	End MJD	Start UTC	End UTC	Exposure time [ks]	Coordinated	
4	NuSTAR	FPMA+B	standard	1ES 0229+200		59612.00000000	59631.00000000	2022:033	2022-052	200	(W) Nu-X	_
8	INTEGRAL			Crab	•	59496.00000000	59499.00000000	2021-Oct-09	2021-Oct-12		(W)	
6	INTEGRAL			Crab		59491.00000000	59493.00000000	2021-Oct-04	2021-Oct-06		(W)	
7	INTEGRAL			Crab	•	59475.00000000	59477.00000000	2021-Sep-18	2021-Sep-20		(W)	
8	INTEGRAL			Crab	5	59464.00000000	59467.00000000	2021-Sep-07	2021-Sep-10		(W)	
9.	INTEGRAL			Crab	•	59453.00000000	59456.00000000	2021-Aug-27	2021-Aug-30		(W)	
10	INTEGRAL			Grab	•	59443.00000000	59445.00000000	2021-Aug-17	2021-Aug-19		(W)	
37	XMM	pn		1ES 0229+200		59410.77986111	59451.47013889	2021:196:18:43:00	2021:237:11:17:00		(W) Nu-X	
12	NuSTAR	FPMA+B	standard	1ES 0229+200		59410.00000000	59451.00000000	2021:196	2021:237	200	(W) Nu-X	
18	Chandra			3C 273		59374.78155093	59376.23174769	2021:160:18:45:26	2021:162:05:33:43		W C-I-Nu-X	
14	XMM			3C 273		59374.78125000	59376.31250000	2021:160:18:45:00	2021:162:07:30:00		P C-I-Nu-X	
15	INTEGRAL			3C 273		59374.03680556	59376.23125000	2021:160:00:53:00	2021:162:05:33		S C-I-Nu-X	
16	NUSTAR	FPMA+B	standard	30 273		59374.00000000	59376.00000000	2021:160	2021:162	30	P C-I-Nu-X	
17	XMM			Mkn 421 +30		59363.44849537		2021-05-29T10:45:50			PX	
18	XMM			Mkn.421+15		59363.29571759		2021-05-29T07:05:50			PX	
19	XMM			Mkn 421	•	59363.14293981		2021-05-29T03:25:50			PX	
20	XMM			Mkn 421 -15		59382.99016204		2021-05-28123:45:50			PX	
21	XMM			Mkn 421 -30		59362.83738426	59363.58738426	2021-05-28T20:05:50	2021-05-29 14:05:50	45.9	s x	
22	XMM	EPIC MOS		Mkn 421-30		59362.77561343	59362.83738426	2021-05-28T18:36:53	2021-05-28 20:05:50	4.2	S X	
22	XMM	EPIC		PSR 80833-45		59352.85181713	59354.04047454	2021-05-18T20:26:37	2021-05-20 00:58:17	89.3	s x	
24	XMM	EPIC MOS		PSR 80833-45		59352.80223380	59352.85008102	2021-05-18T19:15:13	2021-05-18 20:24:07	3	s x	
25						\$0347 S&33333					NOVE	
26	NUSTAR	FPMA+B	center of DET0	Kepler SNR	2	59344.46180556	59345.63194444	2021:130:11:05:00	2021:131:15:10:00		C	
27	XMM	EPID		BPM16274 offset		59340.32376157	59340.44553241	2021-05-05T07:46:13	2021-05-05 10:41:34	9.4	C X	
28	XMM	FPIC		RPM16274 offunt		59340 18810185	59340 30987289	2021-05-06T04:30:52	2021-05-06 07:28-13	9.4	C X	

□ more later...

International Astrophysical Consortium for High Energy Calibration

Coordinations for in-flight calibration

Traditional IACHEC activity supporting new missions

- □ IXPE (NASA/ASI) launch planned for 2021 November 17th
 - Science observations planned to begin mid-December
 - Revisit detailed calibration target choice and scheduling two months before launch (Sept IACHEC?)
- □ Target visibility: 90 +/- 25 deg from the Sun
- Observatory verification plan includes
 - \circ **Crab** two half-day observations separated by ~ 1 week
 - due to telemetry limitations for bright targets
 - 1ES 1959+650 (AGN, BL Lac) used to check alignments
 - good target for IXPE because it is close to the NEP
 - Cyg X-1 may also be used
 - Must be careful not to perform observations that conflict with science investigations
- □ Other coordinations for polarization calibration?
 - Astrosat-CZTI polarization detected in Crab and possibly Cyg X-1
 - However, no overlap in energy range (10-100 keV) with IXPE (2-8 keV)
 - More suited to scientific investigations
 - PolarLight soft X-ray cubesat (eXTP precursor)

International Astrophysical Consortium for High Energy Calibration

Coordinations for in-flight calibration

Traditional IACHEC activity supporting new missions

□ **XRISM** (JAXA/NASA) – launch in FY 2022 (2023)

- Effective area calibration will require ~30 ks exposures
 - > 20 ks overlap with coordinating observatories
- NuSTAR will be useful to calibrate XRISM instruments
 - sensitivity above 10 keV

- $_{\circ}$ GTI-based simultaneous periods are only likely to last < 1 day
 - Imited by relative low-Earth orbit precession
 attempted for NuSTAR+Swift+NICER
- Aim to have fully overlapping start/stop times for coordinated observations
- Meet to discuss detailed calibration target and coordinated observation scheduling ~3 months prior to launch

International Astrophysical Consortium for High Energy Calibration

coordinated observations working group

COWG

coordinated observations working group

International Astrophysical Consortium for High Energy Calibration

1ES 0229+200 The next new IACHEC calibration target Motivation – calibration uncertainties for XMM Soft excess (< 1.5 keV) remains after modelling 3C 273 NuSTAR + XMM data Blazars are useful for effective area X-ray calibration should be simple spectra (absorbed power-law) □ Hence the use of 3C 273 • However... it is bright! 0.5-20 keV flux is 1.45 x 10⁻¹⁰ erg/s/cm² SED of the blazars o pileup – window timing modes – jet! studied by Fossati et. al 1998 □ Mkn 421 a regular XMM calibration target has difficult SED to model

COVG

International Astrophysical Consortium for High Energy Calibration

coordinated observations working group

1ES 0229+200 The next new IACHEC calibration target

□ 1ES 0229+200 has a very simple SED

Ideal for calibration and cross-calibration
 Good fit of power-law extrapolated to UV

UV XMM-OM data are de-reddened Power-law extrapolated from XMM-pn to UV NuSTAR simulated data

□ Chance to calibrate energy range from UV to > 20 keV

XMM-OM+pn, Swift-UVOT+XRT and NuSTAR

□ Count rate is ~ 20% of 3C 273

Could avoid pileup issues for sensitive instruments

Note: UV is well calibrated with optical standard stars (STSci – CALSPEC)

coordinated observations working group

International Astrophysical Consortium for High Energy Calibration

1ES 0229+200 The next new IACHEC calibration target

Caveats

- Blazars are variable
 - will require observations within ~few days
- Past XMM and NUSTAR observations taken years apart do not show significant spectral change
- INTEGRAL Target is not bright enough
- Swift may still be too bright for PCmode but too faint for WT-mode
- May be a good target for Astrosat
 - 3C 273 is too close to equatorial plane

International Astrophysical Consortium for High Energy Calibration

coordinated observations working group

1ES 0229+200 The next new IACHEC calibration target

1ES 0229+200 provides a unique opportunity to calibrate from UV to X-ray

- XMM & NuSTAR observations are planned for July/August
 Swift observations will be requested
 - maybe multiple observations over ~few weeks to examine variability
 - Will ask for Swift-UVOT UV filters to compare calibration of XMM-OM
 - TeV observatories HESS, MAGIC, VERITAS may join campaign
 - likely with radio coverage

□ Recommend that other missions evaluate & join campaign

International Astrophysical Consortium for High Energy Calibration

COWG google sheets

Information about calibration targets and upcoming observations

docs.google.com/spreadsheets/d/1EA_7c0J2c4kX62t-qoVDLXJiE0SkS8sqZiBjokJbUK/edit#gid=0

Request that WG chairs look at information and make additions/corrections

				and the second	10							-						m	-	-					
		1 2 3	.0 .00 123 -	Default (Ari.	- 10	* 8 1 4	-		W B	8 =	5.7	-	*	· 19		9.	60	шı	4	γ.	2.				
				-			Ter.T																	1.00	
r	dets		¢	D.			0	8 I	4	5 1.5	1.00	N 0	6	0 N	1.8	1.10				4	AA /	0 1	0 MD	1 146	40-
۰.	9000	ED tabl				Wanne on King south in	-		-	Ca	Horab	on tar	get ic	er:				-		allhes					
		ED ION				oservation within			(0 =)	not tan	pened to	y calibr	\$50n, j	p-pnm	ery, s	second	ary)			anora	tion b	opie			
•	Target	type	Notes	J2000 RA	J2000 Dec	Cross-cal Lead	ASTROSAT	Chandra	Insight-HXMT	INTEGRAL	DXVW	NUCER	ROTE	SRGIeROSITA	Suzaku	Swift XMM-Newton	XRISM	Effective Area	Vignetting	GE/gain	Timing	Wavelength	Optics	Polarization	Coordinati
4	Typho SNR	SNR		6.339700	64.140800											Yo				Y					
5	1ES 0033+595	AGN, BL Lac		8.968975	59.834497												P	Y							
	BPM16274	WD		12.515206	-52.137643			- 1																	
7	TE 0102.2-7219	SNR	Simple stable the	16.005000	-72.031200		Y	Y		2		V I		Y	0	YY	P	Y	Y	Y	Y		Y		
4	30.58	SNR		31,404300	64.828300				1.2					0	11			111	Y						
	PSR J0218+4232	Pulsar		34.526502	42.538157																τ.				
TQ.	1ES 0229+200	AGN, BL Lac		38.202500	20.288333							0				0		Y							Simultaneo
11	AWM7	Galaxy cluster		43.634200	41.586100										0	0									
12	Perseus cluster	Galaxy cluster		49.946700	41.513100			Y	Y						Y	0	P	Y		Y					none?
12	HR1099	Star, RS CVn		54.197046	0.587760			Y								Y				Y		Ŷ			
14	Abell 478	Galaxy cluster		63.336300	10.476400			-									p		Y						
15	NGC 1550	Galaxy cluster?		64.908004	2.409883												P					Y			
16	EXO 0422-085	Galaxy cluster		66.462580	-8.560690									0											
17	Capella	Star G3 III		79.172327	45.997991			Y.								Y	P			Y		Y	Y		
38	N132D	SNR (LMC)		81.259170	-69.644170			ΥY	9					0	0	YY	5								
19	AB Dor	Star, T-Tau		82.187048	-65.448691							1					p			Y					
20	Sink	SNR, nt, pulsar		83.633030	22.014470	KKM, FF	Y	۷	0	Y	0	Y	0		0	ΥY	P	Y	Y		Y				Simultaneo
21	PSR 80540-69	Pulsar		85.045160	-69.331730																т				
22	zeta Orionia	Star		85.189694	-1.942570											0				Y					
23	40.0614+091	LMXB, ns		94.280400	9.136900																				
24	Abell 3395	Galaxy cluster		98.577556	-54.387906									Y											none

		100% - 1	5 % .0 .00	123 - Default (Ari.	- 10 -	BISA	4. E == -	5 · 1 · 1+ ·	P. 00 E E		
4	•1 h									-	
	A	8	c	p.		E F	.0	8	1	S	ched
	2021	Calibratio	n observatio	ons							brida
	facility_name	instrument_nar	ne		obs_id	t_min	t_max			L'expanse e	xecution_status
	Observatory	Instrument	Settings	Target	Observation ID	Start MJD	End MJD	Start UTC	End UTC	Exposure time [ks]	Coordinated
	NuSTAR	FPMA+B	standard	1ES 0229+200		59612.00000000	59631.00000000	2022:033	2022:052	200	W) Nu-X
	INTEGRAL			Crab		59496.00000000	59499.00000000	2021-Oct-09	2021-Oct-12	1	W0
	INTEGRAL			Crab		59491.00000000	59493.00000000	2021-Oct-04	2021-Oct-06		W)
	INTEGRAL			Crab		59475.00000000	59477.00000000	2021-Sep-18	2021-Sep-20		(W)
	INTEGRAL			Crab	3	59464.00000000	59467.00000000	2021-Sep-07	2021-Sep-10		(W)
	INTEGRAL			Grab	1	59453.00000000	59456.00000000	2021-Aug-27	2021-Aug-30		(W)
	INTEGRAL			Grab	•	59443.00000000	59445.00000000	2021-Aug-17	2021-Aug-19	14	(W)
	XMM	pn		1ES 0229+200		59410.77986111	59451.47013889	2021:196:18:43:00	2021:237:11:17:00		W) Nu-X
	NuSTAR	FPMA+B	standard	1ES 0229+200		59410.00000000	59451.00000000	2021:196	2021:237	200	W) Nu-X
	Chandra			3C 273		59374.78155093	59376.23174769	2021:160:18:45:26	2021:162:05:33:43		W C-I-Nu-X
	XMM			3C.273	1	59374.78125000	59376.31250000	2021:160:18:45:00	2021:162:07:30:00		P C-I-NU-X
	INTEGRAL			3C 273		59374.03680656	59376.23125000	2021:160:00:53:00	2021:162:05:33		S C-I-Nu-X
	NuSTAR	FPMA+B	standard	30 273		59374.00000000	59376.00000000	2021:160	2021:162	30	P C-I-Nu-X
	XMM			Mkn 421 +30		59363.44849537		2021-05-29T10:45:50			PX
	XMM			Mkn 421 +15	-	59363.29571759		2021-05-29T07:05:50			PX
	XMM			Mkn 421		59363.14293981		2021-05-29T03:25:50			PX
	XMM			Mkn 421 -15		59362.99016204		2021-05-28T23:45:50			PX
	XMM			Mkn 421 -30		59362.83738426	59363.58738426	2021-05-28T20:05:50	2021-05-29 14:05:50	45.9	s x
	XMM	EPIC MOS		Mkn 421-30		59362.77561343	59362.83738426	2021-05-28T18:36:53	2021-05-28 20:05:50	4.2	S X
	XMM	EPIC		PSR 80833-45		59352.85181713	59354.04047454	2021-05-18T20:26:37	2021-05-20 00:58:17	89.3	s x
	XMM	EPIC MOS		PSR B0833-45		59352.80223380	59352.85008102	2021-05-18T19:15:13	2021-05-18 20:24:07	3	s x
						\$0347 58333333					NOW
	NUSTAR	FPMA+B	center of DET0	Kepler SNR		59344.46180556	59345.63194444	2021:130:11:05:00	2021:131:15:10:00		C
1	XMM	EPID		BPM16274 offset		59340.32376157	59340.44553241	2021-05-06T07:46:13	2021-05-06 10:41:34	9.4	c x
6	XMM	FPIC		RPM18274 offsol		59340 18810185	59340 30987269	2021-05-06T04:30:52	2021-05-06 07:28:13	9.4	CX

\Box more now – if there is time...

International Astrophysical Consortium for High Energy Calibration

SmartNet observing timelines

About SmartNet and the goals of the SmartNet Community

Whilst astronomy as a science is historically founded on observations at optical wavelengths, studying the Universe in other bands has yielded remarkable discoveries, from the signature of the big bang in the radio, the birth of young stars in the millimetre and infrared, through to high energy emission from accreting gravitationally compact objects and the discovery of gamma ray bursts (part of bannet image credime NASA).

Unsurprisingly, the result of combining multiple wavebands leads to an enormous increase in diagnostic power. But powerful insights can be lost when the sources we wish to study vary on timescales shorter than the coordination between bands. This is an extremely difficult issue to address adequately as it crosses the boundaries of source class, observing bands and even methodological approach.

In July 2015, the workshop "Paving the way to simultaneous multi-wavelength astronomy" was held as the first concerted effort to address this at the Lorentz Center, Leiden and was attended by 50 astronomers from diverse fields as well as the directors and staff of observatories and spaced-based missions. A white paper was produced out of this meeting and published with the goal of disseminating the findings of that workshop, the problems identified and the solutions we believe are vital to implement for the future of observational astronomy, and with the hope to stimulate further discussion and the overall awareness of the community of these issues.

The website you are visiting now is the shared platform of the SmartNet community, aimed at sharing ideas, news, and useful data. We aim at optimizing the multiwavelength effort for all future Astronomical events that will require a fast responding and well coordinated community.

Please use our this form in order to join our community.

SmartNet community coordination team: Matt Middleton, Piergiorgio Casella, Poshak Gandhi, Enrico Bozzo.

http://www.isdc.unige.ch/smartnet/