Status of the White dwarf (WD) and Isolated Neutron Star (INS) Working Group

Vadim Burwitz (MPE) on behalf of the working group
IACHEC Virtual Spring Meeting,
May 19, 2021
Presentations during Working group

• The wiki page (last updated 2019)
• Chandra ACIS → Herman Marshall
• Chandra LETG → Vadim Burwitz
• eROSITA → Frank Haberl
White Dwarfs and Isolated Neutron Stars

• Models

RX J1856.5-3754 based on the CHANDRA LETGS + HRCS Data

delchi2qr = 1 (≈ 1 sigma for 1 parameter)

• tbabs*bbodyrad

 chi2q = 692.6

 dof=1251

 chi2red = 0.55367

 nh = (7.24 +/- 0.34) * 1e19 cm-2

 kT = (0.238 +/- 0.38) eV

 norm = (1.580 +/- 0.064) * 1e5

• phabs*bbodyrad

 chi2q = 696.0

 dof=1251

 chi2red = 0.55636

 nh = (7.37 +/- 0.35) * 1e19 cm-2

 kT = (0.234 +/- 0.38) eV

 norm = (1.576 +/- 0.065) * 1e5
Chandra

RX J1856.5−3754
(= RXJ1856)

Monitoring ACIS
Chandra

RX J1856.5–3754
(= RXJ1856)

ACIS
Contamination
Corrected
Chandra

RX J1856.5–3754
(= RXJ1856)

ACIS / LETG selection range
Chandra

RX J1856.5–3754
(= RXJ1856)

ACIS energy selection

30% Loss?
Chandra

RX J1856.5–3754
(= RXJ1856)

ACIS Summary

• Source tracks 44-50 Å (0.248-0.262 keV) throughput

• ACIS contaminant reduces count rate now by x5

• Contaminant model is undercorrecting in 2017-19 by 15% compared to 2012-14

• Absolute count rate is 30% less than expected; due to PHA losses due to event threshold?

• Count rate is low, comparable to background — time to increase exposure?
LETGS Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500000</td>
<td>00113</td>
<td>56,5</td>
<td>2000-03-10</td>
<td>07:55:12</td>
</tr>
<tr>
<td>2</td>
<td>500285</td>
<td>03380</td>
<td>168,9</td>
<td>2001-10-10</td>
<td>05:06:28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03381</td>
<td>172,5</td>
<td>2001-10-12</td>
<td>19:19:26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03382</td>
<td>103,4</td>
<td>2001-10-08</td>
<td>08:18:49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03399</td>
<td>10,6</td>
<td>2001-10-15</td>
<td>11:47:06</td>
</tr>
<tr>
<td>3</td>
<td>502023</td>
<td>15293</td>
<td>93,4</td>
<td>2013-06-12</td>
<td>14:29:49</td>
</tr>
<tr>
<td></td>
<td>590518</td>
<td>14418</td>
<td>31,5</td>
<td>2013-10-01</td>
<td>05:03:34</td>
</tr>
<tr>
<td>4</td>
<td>503147</td>
<td>21693</td>
<td>84,0</td>
<td>2019-06-13</td>
<td>23:56:06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21896</td>
<td>24,3</td>
<td>2019-07-15</td>
<td>06:15:27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22282</td>
<td>17,7</td>
<td>2019-07-18</td>
<td>15:23:52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22283</td>
<td>33,9</td>
<td>2019-07-20</td>
<td>14:36:13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22284</td>
<td>17,3</td>
<td>2019-07-21</td>
<td>16:24:53</td>
</tr>
</tbody>
</table>
Chandra

RX J1856.5–3754
(= RXJ1856)

LETGS Data

Top: Spectra showing the data obtained with the LETGS (top panels) and ratio of data to model (bottom panels). (left) shows the data selected for the spectral fit, free of higher orders and (right) a wider region that shows the higher order contribution (< 0.18 keV) and low flux region (> 0.7 keV)

Bottom: Same spectra as above but separated in negative (left) and positive (right) orders for clarity with the same model parameters as in Figure 3
Chandra

RX J1856.5–3754

(= RXJ1856)

LETGS Data

Fit #1 corresponds to the Fit on the wiki page.

<table>
<thead>
<tr>
<th>Fit [#]</th>
<th>NH ([10^{-19} \text{ cm}^{-2}])</th>
<th>(kT_{bb}) ([\text{eV}])</th>
<th>Normx ([\times 10^5])</th>
<th>d.o.f.</th>
<th>(\chi^2)</th>
<th>Exp. ([\text{ksec}])</th>
<th>Obs IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.24±0.34</td>
<td>62.38±0.38</td>
<td>1.580±0.064</td>
<td>1251</td>
<td>0.556</td>
<td>538</td>
<td>03382, 03381, 03381, 15933</td>
</tr>
<tr>
<td>2</td>
<td>7.35±0.29</td>
<td>62.42±0.37</td>
<td>1.493±0.056</td>
<td>2550</td>
<td>0.540</td>
<td>622</td>
<td>03382, 03381, 03381, 15933, 21693</td>
</tr>
<tr>
<td>3</td>
<td>7.20±1.12</td>
<td>64.53±1.39</td>
<td>1.348±0.187</td>
<td>211</td>
<td>0.494</td>
<td>56</td>
<td>Epoch 1</td>
</tr>
<tr>
<td>4</td>
<td>7.18±0.41</td>
<td>63.56±0.41</td>
<td>1.456±0.061</td>
<td>1771</td>
<td>0.554</td>
<td>455</td>
<td>Epoch 2</td>
</tr>
<tr>
<td>5</td>
<td>8.01±0.70</td>
<td>62.27±0.88</td>
<td>1.490±0.052</td>
<td>491</td>
<td>0.414</td>
<td>125</td>
<td>Epoch 3</td>
</tr>
<tr>
<td>6</td>
<td>8.52±0.94</td>
<td>62.31±1.13</td>
<td>1.786±0.210</td>
<td>895</td>
<td>0.363</td>
<td>177</td>
<td>Epoch 4</td>
</tr>
<tr>
<td>7</td>
<td>7.38±0.28</td>
<td>62.35±0.34</td>
<td>1.490±0.052</td>
<td>3382</td>
<td>0.487</td>
<td>814</td>
<td>All</td>
</tr>
</tbody>
</table>
Chandra

RX J1856.5–3754
(= RXJ1856)

LETGS

Unfolded Spectra with best blackbody fit to the LETGS spectra using the same parameters fit #2
eROSITA Calibration observations of the INSs RX J1856.5–3754 and 1RXS J214303.7+065419
eROSITA

RX J1856.5–3754
(= RXJ1856)

Standard blackbody model
No edge

eROSITA spectra of RXJ1856 (from TM1, 2, 3, 4, 6 and observations 700008, 710001 and 720002), binned to a minimum of 20 cts/bin.

Top: using single-pixel events
Bottom: using events from all valid patterns.

The panels on the left show the spectra over the whole covered energy band, on the right up to 1 keV in linear scale. The histograms indicate the best-fit model composed of an absorbed black-body model.
eROSITA

RX J1856.5–3754 (= RXJ1856)

Standard blackbody model

Additional carbon edge

eROSITA spectra of RXJ1856 (from TM1, 2, 3, 4, 6 and observations 700008, 710001 and 720002), binned to a minimum of 20 cts/bin.

Top: using single-pixel events

Bottom: using events from all valid patterns.

The panels on the left show the spectra over the whole covered energy band, on the right up to 1 keV in linear scale. The histograms indicate the best-fit model composed of an absorbed black-body model with additional absorption edge (edge energy consistent with that of Carbon).
eROSITA

1RXS J214303.7+065419 (=RXJ2143)

Different Models

eROSITA single-pixel event spectra of RXJ2143 from observation 700198 (TM1, 2, 3, 4, 6), binned to a minimum of 20 cts/bin, fitted with different models.

From top left to bottom right:

1) Simple absorbed black-body
 $\text{T} \text{Babs} \cdot \text{bbodyrad}$

2) including a narrow absorption line (as known from XMM observations)
 $\text{T} \text{Babs}(\text{gaussian} + \text{bbodyrad})$

3) including a narrow absorption line and an absorption edge
 $\text{T} \text{Babs} \cdot \text{edge} (\text{gaussian} + \text{bbodyrad})$

4) a two-temperature black body model
 $\text{T} \text{Babs} \cdot \text{gabs} (\text{bbbodyrad} + \text{bbbodyrad})$

In each case a constant factor was applied as free parameter to each spectrum.
eROSITA

1RXS J214303.7+065419 (=RXJ2143)

eROSITA single-pixel event spectra of RXJ2143 from observations 700198 and 720005 (TM1, 2, 3, 4, 6).

Top: Simultaneous fit to the 10 spectra with common NH and edge depth (logarithmic and linear scales).

Bottom left: Same model fit, but with two NH values free in the fit, one for the spectra of the first and one for the spectra of the second observation.

Bottom right: Similarly, two values for the edge depth. For the spectra plotted in linear scale, black indicates spectra from observation 700198 and red those from observation 720005.
eROSITA

1RXS J214303.7+065419 (=RXJ2143)

Pattern Fractions

Comparison of pattern fractions for the observations of RXJ2143 with TM3.

The top panels show the pattern fractions for the two observations separately.

The bottom panel is a superposition of the two.
Summary

- Track contamination after larger orbital manuevres → no cumulative effect detectable

- RXJ1856 requires an additional absorption edge → feature in all spectra
 energy consistent with C-edge calibration?

- Single events → good spectra
 flux varies between TMs and observations
 (sub-pixel position of source)
 → work ongoing

- All valid events → More consistent fluxes
Status of INS and WD Working Group

• Isolated Neutron Stars
 o ACIS – update using RXJ1856 presented by Herman
 o Summary of 20 years of LETGS observations of RXJ1856
 o Status of eROSITA RXJ1856 and RXJ2143 calibration shown

• Work to do!!
 o Follow the new calibration measurements as the come in
 o Further investigate the hard X-ray tail seen in XMM and Chandra?
 o Check for a high energy tail in eROSITA

• WDs
 o No updates this time round