

# Planning in-flight calibration for XRISM

Eric D. Miller (MIT) for the XRISM Team IACHEC April 2021 Plenary Sessions



#### The XRISM team







#### Outline



- Overview of the XRISM mission and instruments
- In-flight calibration planning team organization and guiding principles
- Calibration target list
- Specific in-flight calibration tasks and strategies
- Discussion

#### **Science goals**

X-Ray Imaging and Spectroscopy Mission

XRISM is the "X-Ray Imaging and Spectroscopy Mission": High-spectral-resolution *imaging* spectrometer across a broad X-ray band

- 1. Formation and evolution of structure in the Universe
  - How do cluster mergers turn gravitational energy into thermal energy?
  - How much energy is distributed in ICM motion?
- 2. Circulation of baryonic matter in the Universe
  - How do supernova and AGN feedback distribute heavy elements?
- 3. Transport and circulation of energy in the Universe
  - How do galaxies and their supermassive black holes evolve together?
  - How do AGN and X-ray binary accretion flows and winds work?
- 4. New astrophysics
  - SNR plasma diagnostics, validation of laboratory measurements, dark matter.



XRISM will greatly expand a new era of spatially resolved X-ray spectroscopy begun by Hitomi.

#### **Mission**



- XRISM is led by JAXA, with contributions from NASA and ESA
- 3-year nominal mission + cryogen-free mode
- Low Earth orbit,  $i = 31^{\circ}$
- Launch in JFY 2022 (Apr 2022–Mar 2023)
  - 0-3 months: initial phase (commissioning)
  - 3–9 months: calibration + PV phase
  - 9+ months: GO phase



| Instrument | FOV                   | PSF (HPD) | ΔE (FWHM @6<br>keV)                  | Energy<br>band |
|------------|-----------------------|-----------|--------------------------------------|----------------|
| Resolve    | 3′×3′<br>(6×6 pixels) | <1.7′     | <mark>7 e</mark> ∨<br>(goal 5 eV)    | 0.3–12 keV     |
| Xtend      | 38'×38'               | <1.7′     | < 250 eV at EOL<br>(< 200 eV at BOL) | 0.4–13 keV     |

#### Resolve

- High-resolution imaging spectrometer, based on Hitomi SXS, including X-ray Mirror Assembly (XMA).
- Detector must be cooled to 50 mK.



- Flight detector has been integrated with flight dewar at SHI in Japan and is undergoing testing.
- Flight XMA in testing and calibration at GSFC.





| Parameter              | Requirement                       | Hitomi Values                       |
|------------------------|-----------------------------------|-------------------------------------|
| Energy resolution      | 7 eV (FWHM)                       | 5.0 eV                              |
| Energy scale accuracy  | ± 2 eV                            | ± 0.5 eV                            |
| Residual Background    | 2 x 10 <sup>-3</sup> counts/s/keV | 0.8 x 10 <sup>-3</sup> counts/s/keV |
| Field of view          | 2.9 x 2.9 arcmin                  | same, by design                     |
| Angular resolution     | 1.7 arcmin (HPD)                  | 1.2 arcmin                          |
| Effective area (1 keV) | > 160 cm <sup>2</sup>             | 250 cm <sup>2</sup>                 |
| Effective area (6 keV) | > 210 cm <sup>2</sup>             | 312 cm <sup>2</sup>                 |
| Cryogen-mode Lifetime  | 3 years                           | 4.2 years (projected)               |
| Operational Efficiency | > 90%                             | > 98%                               |

#### **Xtend**

X-Ray Imaging and Spectroscopy Mission

- Wide-field X-ray CCD imager, based on Hitomi SXI, including XMA.
- 4 × 200- $\mu$ m thick BI CCDs
  - Good QE at soft and hard energies.
  - Low particle background.
  - 38'×38' FOV allows detection of sources that might contaminate Resolve FOV, and monitoring for transients.
- Flight detector undergoing testing and calibration at Osaka U., MHI, and TKSC in Japan.
- Flight XMA in testing and calibration at GSFC.



Nakajima+2020







# In-Flight Calibration Plan (IFCP)

- Ground calibration is underway, but things can change after launch and on-orbit. Porter+2020, Midooka+2020, Nakajima+2020, Yoneyama+2020
- In-flight calibration plan must:
  - Identify and prioritize calibration requirements for the instruments aboard XRISM;
  - Identify calibration targets and observing strategies;
  - Perform feasibility simulations.
- Calibration challenges for Resolve:
  - Unprecedented combination of spectral resolution, spectral coverage, and effective area.
  - Field of view ~ point spread function.
- Calibration challenges for Xtend:
  - Imaging fidelity over 38' FOV.
  - Increased hard-band response compared to other X-ray CCD instruments.





M87 core (100 ks)

9

#### **IFCP team**

X-Ray Imaging and Spectroscopy Mission

| Chair<br>Co-chair             | Eric Miller *<br>Makoto Sawada *                                                                                                       | Science<br>Management<br>Office | Makoto Tashiro<br>Richard Kelley<br>Rob Petre                                                             |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|
| Resolve<br>Instrument<br>Team | Megan Eckart<br>Caroline Kilbourne<br>Maurice Leutenegger                                                                              |                                 | Matteo Gualhazzi *<br>Brian Williams<br>Hiroya Yamaguchi                                                  |
|                               | Scott Porter<br>Masahiro Tsujimoto<br>Cor de Vries<br>Takashi Okajima<br>Takayuki Hayashi<br>Keisuke Tamura<br>Rozenn Boissay-Malaquin | Science Team                    | Marc Audard<br>Ehud Behar<br>Laura Brenneman<br>Lia Corrales<br>Renata Cumbee<br>Teruaki Enoto<br>Liyi Gu |
| Xtend<br>Instrument<br>Team   | Hironori Matsumoto<br>Koji Mori<br>Hiroshi Nakajima<br>Takaaki Tanaka                                                                  |                                 | Edmund Hodges-Kluck<br>Yoshitomo Maeda<br>Maxim Markevitch *<br>Paul Plucinsky                            |
| Science<br>Operations<br>Team | Yukikatsu Terada<br>Mike Loewenstein<br>Tahir Yaqoob                                                                                   |                                 | Aurora Simionescu *                                                                                       |

\* IFCP sub-group lead.



- Broad membership drawn from Instrument Teams, Science Operations Team, and Science Team.
- Ensures necessary technical and astrophysical background to understand limits imposed by instrumentation and celestial sources.
- Ensures that all interested parties have a stake in proper calibration to reach the desired science goals.
- Greatly expands the workforce available to run complex simulations of different calibration strategies and review possible targets.



- Build in flexibility
  - Identify secondary calibration targets well in advance of launch in case of schedule changes.
- Plan ahead
  - Perform simulations of observations and strategies well before launch.
  - Learn from previous experience to prepare contingency plans (e.g. molecular contamination monitoring and calibration).
- Use the community
  - Capitalize on experience of IACHEC\*, including standard candle definitions and multimission observation coordination.
  - XRISM IFCP borrows heavily from Hitomi IFCP, but with fewer instruments.

(Rî

# Calibration requirements are derived from mission science goals by the Instrument Teams. Tashiro+2018, Tashiro+2020, Eckart+2018

| Requirement                                             | Resolve                                             | Xtend                             |
|---------------------------------------------------------|-----------------------------------------------------|-----------------------------------|
| Energy scale                                            | 2  eV for each pixel                                | 5% (1  keV)                       |
|                                                         | [1  eV (0.05-12  keV), 3  eV (12-25  keV)]          | $0.3\%~(6~{ m keV})$              |
| Energy resolution (FWHM)                                | 1 [0.5] eV for each pixel <sup>b</sup>              | $10\% \ (1 \ { m keV})^c$         |
|                                                         | [2  eV (12 - 25  keV)]                              | $5\% \ (6 \ \mathrm{keV})^c$      |
| Abs. eff. area on-axis <sup><math>d</math></sup>        | 10%  [5%]                                           | $10\% \; [5\%]$                   |
| Abs. eff. area off-axis <sup><math>d</math></sup>       | $10\% \ [5\%]$ within 5'                            | 15%~[10%] within $10'$            |
| Rel. eff. area on-axis <sup><math>d</math></sup>        | $5\%~[3\%]~[5\%~(1225~{ m keV})]$                   | 5%  [2%]                          |
| Rel. eff. area $< 2'$ off-axis <sup>d</sup>             | $5\%~[3\%]~[5\%~(1225~{ m keV})]$                   | $10\% \ [5\%]$                    |
| Rel. eff. area $2'-5'$ off-axis <sup>d</sup>            | $10\%~[10\%~(12{-}25~{ m keV})]$                    | 10%  [5%]                         |
| Rel. eff. area $> 5'$ off-axis <sup>d</sup>             | N/A                                                 | $10\% \; [5\%]$                   |
| Rel. eff. area fine structure <sup><math>d</math></sup> | 5% in 1 eV bins around C, N, O K edges <sup>e</sup> | 15% at Si K edge                  |
| $PSF \text{ on-axis}^f$                                 | $5\% \; [3\% \; (0.3  25 \; \mathrm{keV})]$         | 10%                               |
| $PSF off-axis^{g}$                                      | $5\% \ [5\% \ (1225 \ { m keV})]$                   | [10%]                             |
| Absolute $\operatorname{timing}^h$                      | $1.0 \mathrm{ms}$                                   | 10 ms                             |
| Relative $\operatorname{timing}^h$                      | $0.5 \mathrm{ms}$                                   | TBD                               |
| Aimpoint                                                | Difference in the aimpoint and optical              | axis known to $30^{\prime\prime}$ |

Table 1. XRISM calibration requirements to be verified in flight.<sup>a</sup>

# **IFCP boundary conditions**

- Available calibration time
  - Commissioning phase:
  - Calibration and PV phase:
  - GO phase:
- Visibility constraints
  - 90-minute low-Earth orbit, 90°±30° Sun angle
  - Most sources are visible 2x per year, short windows for Ecliptic sources, high-Ecliptic latitude sources are always visible.
  - Roll constraints affect extended sources, raster scans, PSF measurements.
- Bright source limits
  - Resolve encounters issues with >10mCrab sources: reduced high-res fraction due to pulse overlap, electrical cross-talk degrading resolution, dead time from PSP overload. XRISM Bright Sources Study Group ("The 1 Crab Club"), Lead: E. Hodges-Kluck
  - Xtend suffers pile-up for >1mCrab sources. Tamba+2021

0 Msec [ 1 mo + (0.05 × 6 mo) ] \* 0.43 = 1.4 Msec (0.05 × 12 mo) \* 0.43 = 0.7 Msec





# **Preliminary Target List Visibility**



• Some calibration must be done early.

Ri

X-Ray Imaging and

- 1. Determination of the boresight and optical axis position of both instruments.
- 2. Verification of the accuracy of time assignment.
- 3. Verification of the accuracy of the Resolve energy scale and resolution.
- 4. Contamination monitoring campaign of the Resolve and Xtend.
- 5. First characterization of the overall effective area calibration.
- Target visibility and flexibility are key!

# **Preliminary Target List Visibility**



Some calibration must be done early.

Rî

X-Ray Imaging and

- Determination of the boresight and 1. optical axis position of both instruments.
- Verification of the accuracy of time 2. assignment.
- 3. Verification of the accuracy of the Resolve energy scale and resolution.
- Contamination monitoring campaign of 4. the Resolve and Xtend.
- 5. First characterization of the overall effective area calibration.
- Target visibility and flexibility are key!

#### **Preliminary Target List by Sub-group**



- IFCP Team has ~30 people. That's a lot.
- Sub-groups defined for detailed work.
  - Review specific XRISM in-flight calibration requirements.
  - Review Hitomi IFCP to identify changes:
    - New or stricter requirements for XRISM.
    - New or different operational constraints placed on XRISM compared to Hitomi.
    - Elimination of hard X-ray instruments.
    - New science goals for XRISM.
  - Perform simulations and plan strategies.

X-Ray Imaging and

X-Ray Imaging and Spectroscopy Mission

<sup>55</sup>Fe-illuminated calibration pixel for overall energy scale, LSF trend.



<sup>55</sup>Fe filter wheel position to illuminate all pixels, 1 ct/s/pix @ 6 keV.

Modulated X-ray Source (MXS) can be pulsed at 1–3% duty cycle, 1–3 cts/s/pix

RiS



#### **Resolve energy scale and spectral response**

• Coronal stars for on-axis energy scale, LSF < 5 keV. Exposure times driven by LSF calibration.



Simulations by M. Audard

RiS/

# **Resolve energy scale and spectral response**

I response XRiSM

- Capella raster scan to uniformly illuminate all Resolve pixels.
- Obtain >1000 counts in two Fe L lines (0.72 and 0.82 keV).
- Two modes (normal/forced mid-res) × three operating temperatures.



#### **Resolve & Xtend effective area on-axis**

- Bright blazars (3C273, PKS2155) for on-axis effective area (absolute and relative).
- Variable, so must be observed simultaneously with other instruments, especially NuSTAR.



X-Ray Imaging and

#### **Resolve & Xtend effective area on-axis**

- All filter and gate valve combinations must be calibrated for Resolve.
- Xtend must use a fainter source than Resolve due to pile-up, like 1ES0033.
- Observe E0102 to compare continuum-dominated and line-dominated sources, monitor contamination.
- Observe RXJ1856 to monitor contamination.



3C273 (Resolve GVO, 50 ks)

3C273 (Resolve GVC, 50 ks)

#### **Xtend effective area off-axis**

• 4×10 ksec raster scan of "peaky cluster" for Xtend XMA off-axis vignetting and optical axis.



Simulations by A. Simionescu

**K**Ris

# **Resolve timing**

X-Ray Imaging and Spectroscopy Mission

- Resolve timing requirements are 1.0 ms absolute, 0.5 ms relative.
- Includes allocations for instrument and spacecraft.
- Crab pulsar is best source, but other sources can calibrate absolute timing if visibility is bad.





Simulations by M. Sawada

- "Science calibration" targets are valuable for enabling the best XRISM science or performance, but do not directly address *instrument* calibration.
  - Enhance PV or GO phase science.
  - Require early observations (PV phase) to be of most use.
  - Enable or enhance science return on multiple categories of objects.



X-Ray Imaging and Spectroscopy <u>Miss</u>



- XRISM in-flight calibration plan builds on lessons learned.
- Team members have been performing simulations, planning strategies.
- Preliminary target list has been compiled, final simulations are underway and observing strategies are being planned.
- Thanks to hard work on ground calibration by instrument teams, we expect smooth in-flight verification, but we will be prepared!

#### **Thanks!**



- Tashiro+2020, "Status of x-ray imaging and spectroscopy mission (XRISM)." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 1144422
- Porter+2020, "Initial ground calibration of the Resolve detector system on XRISM." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 1144424
- Midooka+2020, "X-ray transmission measurements of the gate valve for the x-ray astronomy satellite XRISM." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114445C
- Nakajima+2020, "Soft x-ray imager (SXI) for Xtend onboard X-Ray Imaging and Spectroscopy Mission (XRISM)," Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 1144423
- Yoneyama+2020, "On-ground calibration of XRISM/Xtend CCD." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 11425
- Terada+2020, "Detail plans and preparations for the science operations of the XRISM mission." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114445E
- Loewenstein+2020, "The XRISM science data center: optimizing the scientific return from a unique x-ray observatory." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114445D
- Miller+2020, "Planning in-flight calibration for XRISM." Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 1144426
- Kilbourne+2018, "Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector," JATIS 4, 011214
- Ishisaki+2018, "In-flight performance of pulse-processing system of the ASTRO- H/Hitomi soft x-ray spectrometer," JATIS 4, 011217
- de Vries+2018, "Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft," JATIS 4, 011204

#### **Resolve energy scale and spectral response**



Ris



#### XRISM In-flight Calibration Plan — IACHEC April 2021 Plenary Sessions

#### **Xtend energy scale and spectral response**

- Strategy from Suzaku XIS: field-filling stable line sources.
  - Perseus Cluster @ 6 keV
  - Cygnus Loop @ < 2 keV</li>
- Xtend has 4x the FOV of XIS.
  - Outer regions are expensive to calibrate.
  - But aimpoint will be self-calibrated by any line source thanks to Resolve!

|          | Gain uncertainty                                                                                  | $t_{ m exp}$ (ks) | Description                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Case I   | $7 \text{ eV } @ r < 8' \\ 18 \text{ eV } @ 8' < r < 15' \\ 60 \text{ eV } @ r > 15' \end{cases}$ | 80                | Observed only on-axis to reach the same gain uncertainy as Suzaku/XIS.                                                                    |
| Case II  | 7 eV on-axis chip<br>8 eV neighbor chips<br>9 eV opposite chips                                   | 320               | Observed on each chip for the same exposure<br>time and goal as Case I. Off-axis chips have<br>higher uncertainty due to vignetting.      |
| Case III | 7 eV everywhere                                                                                   | 640               | Observed on each chip for exposure time that<br>scales with vignetting, to reach the Suzaku/XIS<br>gain uncertainty at all FOV locations. |

Table 2. Achievable gain calibration uncertainty for Xtend.



