NuSTAR Background Origins, Mitigations, and Modeling

Brian Grefenstette, May 24, 2022 - IACHEC

Scope How to handle and produce background models

Origin of the NuSTAR background

Mitigation strategies

Background modeling techniques

Origin of the NuSTAR Background

Slide courtesy Dan Wik

Origin of the NuSTAR Background

cts/sec

- Lines result (mostly) from proton activation
- Half-life ranges from hours to years
- Short-lived lines -> temporal variability, or "radiation belt memory"
- Continuum depends on space weather

Background

Mitigation How do I know if the space weather was bad and what can I do?

- filtering in nustardas
- SAA Filtering/SAA Filter.php
- the data

NuSTAR SOC provides automated checks and summary reports for standard

Link here: <u>https://nustarsoc.caltech.edu/NuSTAR_Public/NuSTAROperationSite/</u>

• Available for every observation throughout the mission (updated automatically)

Up to user to decide which combination of filters is appropriate / best utilizes

Mitigation What does a "good" background look like?

Slow variations associated with geomagnetic rigidity cutoff and orbital precession

Grefenstette et al (2022), in prep to discuss "normal" background variations

cts/sec

Mitigation What does a "radiation belt" background look like?

nucalcsaa options: nucalcsaa task not used!

Effective exposure time: 48003 sec (100.0%)

Effective exposure time: 45691 sec (95.18%)

Mitigation What does a "solar flare" background look like?

M-class solar flare seen ~78-degrees from the Sun

No standard filters designed to remove these, but easy to identify

Can roll your own GTI to remove these in XSELECT

Effective exposure time: 96891 sec (100.0%)

Mitigation What does "stray light" look like?

Flux from nearby sources (1-3 deg) illuminating FoV

Important for galactic sources

Usually easy to identify, but not always

StrayCats team has checked almost all observations in detail

Check your observation: https://nustarstraycats.github.io/straycats/

StrayCats Galactic Distribution

Modeling

Aperture Cosmic X-ray Background: Spatial variations present due to geometry

Internal continuum + lines:

Detector-to-detector variations due to CZT thickness

Spatial dependance modeled using nuskybgd

I've done the best I can, but I hear you're not supposed to subtract background....

Spatial Distribution of CXB **FPMA FPMB**

"Nominal" optical axis position

Modeling nuskybgd

- Latest python implementation and walkthroughs here:
 - https://github.com/NuSTAR/nuskybgd-py
 - Original author Dan Wik
 - python port by Qian Wang
 - Further tweaks and examples by BG
- Capabilities:
 - Broadband (3-160 keV) background modeling with appropriate response
 - Produce background models for arbitrary source locations in FoV
 - Produce band-selected background images

Modeling - Caveats What gremlins do you need to know about?

- Solar component currently un-modeled.
 - Mitigate solar flare backgrounds first
 - For extremely sensitive science, use NuSTAR only in Earthshadow
 - Details coming, see Grefenstette et al, in prep. Or ask me.
- - IDL version has an early spatial template
 - Can be identified by "Fe lines" in background regions within ± 10 deg of the plane.

Galactic ridge hard X-ray emission currently un-modeled in python version

Modeling - Caveats pt 2 Time dependence

- Continuum has time dependence based on geomagnetic magnetic rigidity cutoff
- Strength will depend on space weather + location in orbit while source was being observed

Two Months of Quiet Background

Modeling - Caveats pt 2 Time dependence

- 24 keV line has SAA-memory
 - Unclear what line this is (lots in this region), but seems to be strongest in ~10 minutes post-SAA
- Strength of line in total spectrum will depend on time spent in post-SAA region

Modeling - Caveats pt 2 Time dependence

- 88 keV line-to-continuum ratio has grown over time
 - Half-life is ~1.25 years
 - Monotonically (but not linearly) increasing with time
- Relative strength of line will depend on epoch of observation

fears since launch

Take aways

Mitigate background first, when possible

- Various background components vary over time:
 - Will be further documented in upcoming paper
 - useful

- Use nuskybgd to produce synthetic models
 - 88 keV, and 24 keV lines to vary
 - All demonstrated in worked example on GitHub

Time-dependence means that "database" of synthetic backgrounds probably not worth producing or

Need to allow strength of internal continuum, overall normalization of lines, and *relative* normalization of