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Background/History

• Laboratory astrophysics:
Began in ~ 1993 at LLNL when 
S. Kahn realized the Fe L-shell was 
complex even if resolved by XMM-
Newton’s RGS. Same issue would 
arise for Chandra.

• Contacted P. Beiersdorfer to measure 
the wavelengths and work with D. 
Liedahl and M.F. Gu to identify the lines. 

• Lines from Fe L-shell were measured 
between 1993 and 2007 (Brown et al 
1998, 2002, Chen et. al, 2007).

XMM-Newton: Launch Dec 1999

Chandra: Launch July 1999

High resolution instruments in orbit helped uncover the need for laboratory astrophysics and measurements 
are being conducted at multiple facilities worldwide. 
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Fe L-shell Wavelengths

• Measurements of X-ray emission 
from Fe L-shell lines: 
Brown et al 1998:  Fe XVII 
Brown et al 2002:  Fe XVIII – Fe XXIV
Chen et al 2007 : Higher-n Fe 

• Initial results used HULLAC for 
identification. M. F. Gu then built the 
Flexible Atomic Code. 

• Wavelengths accurate to ~ 5 mÅ

• K-shell lines from He-like and H-like 
O, F, & Ne  were used for 
calibration. Calculated wavelengths 
from Drake (1988), Garcia & 
Mack (1965).

Li-like Fe XXIV spectrum measured at LLNL 
EBIT-I

Be2
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Fe L-shell Wavelengths
• Results greatly improved modeling of HETG 
and RGS spectra. 

• Able to positively ID previously mis-identified, i.e., 
the F1 line (Drake et al., ApJ , 1999).

• Demonstrated importance for K-shell diagnostics, 
i.e., must be aware of blends.
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Measurements help to put analysis of spectra measured with 
Chandra and XMM-Newton on sound footing 
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Benchmarking Models

• In parallel to the wavelength 
measurements, M. F. Gu built the 
Flexible Atomic Code (FAC).

• M. Gu also developed a MBPT 
approach to calculating wavelengths.
(available as part of FAC). 

• Benchmarked using the LLNL EBIT 
results.

• Available as Modified 
APED table (MAPED).

• Improved fit to Capella

M. Gu (ApJS 2007) MBPT results of 
compared to lab measurement 

MAPED fit to Capella 

Black: MBPT 
Red: CI (old)
Error bars from 
measurement
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More recent study of Fe L-Shell models

Continued focus on Fe L-shell helps prepare for future high-resolution missions

• Recently (since Hitomi), more modeling of 
the Fe L-shell work has been completed.

• L. Gu et al. (A&A 2020), have modeled 
the Capella spectrum and completed 
an extensive analysis of Fe data 
quality.

• Used EBIT data from LLNL 
and Heidelberg groups for comparison. 

• Advanced model includes EBIT data

• “Ultimate” model includes corrected 
wavelengths from other codes. 

• Requests more Lab Astro.  

Sample of L. Gu (A&A, 2020) SPEX fit 
to Capella
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Evolution of wavelength standards: EBITs and HCIs 
at advanced light sources

EBITs at advanced light sources enable high accuracy measurements of transition energies

From light source PolarX EBIT Sample Gas Cell
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Example Results: Recalibrate molecular and atomic oxygen

New measurement Polar-X EBIT at BESSY-II update the O2 standard and bring the O 
absorption feature into (near) agreement with theory and lab measurement.

• Wavelength of atomic 
O absorption 
measured by Chandra 
& XMM-Newton in ISM
did not agree with lab 
measurement.

• Old lab measurement 
calibrated using O2
absorption based on 
EELS measurements.

• Using Polar-X EBIT at 
BESSY-II, the O2
spectrum was 
recalibrated against 
He-line N5+ line 
emission. O2 spectrum

O2 and He-like N5+ spectra measured at BESSY-II using 
Polar-X EBIT 

He-like N5+ spectrum

~ 0.45 eV shift

Leutenegger et al. PRL,  2020
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K-shell standards 

•  K-shell emission from helium-like and hydrogenic ions are the 
standard reference lines for energy-scale calibration for ground-based 
experiments and X-ray observatories. 

• Early measurements were conducted using beam foil techniques, laser 
experiments, vacuum spark devices, or measured from tokamaks.

• In the late 1980s and early 1990s,  EBITs were used as the new 
standard source for generating highly charged ions and measuring 
emission wavelengths.  

• More recently, using EBITs at advanced light sources. 

• He-like systems have been measured absolutely or against H-like systems.

• H-like systems have been measured absolutely.
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K-shell measurements 

• Most He-like systems have been measured relative
to H-like transition energies.

• Some absolute measurements have 
been made to high accuracy, e.g.: 
- Ar16+ :Kubicek et al., 2012 (MPIK-Heidelberg EBIT)  
with accuracy of  5 meV.

- Ar16+ :Machado et al., 2018 (NIST ECR)
with accuracy of 8 meV (agrees with Kubicek.)

- Fe24+ : Rudolph et al., PRL (2013) w/ accuracy of 70 meV

MPIK EBIT absolute wavelength 
measurement of He-like  Ar16+

Kubicek et al. RSI 2012

Absolute wavelength measurements of K-shell transitions in 
highly charged Fe using FLASH-EBIT at Petra-III

Petra-III fluorescence spectrum

Rudolph et al. PRL 2013
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K-shell measurements: He-like Systems 

• He-like line lines w is on good 
footing for most measurements.

• Solid Green : Cheng et al., PRA (1994)
Dashed Blue: Artemyev et al., PRA (2005)
Reference: Drake, Can. J. Phys. (1988).

He-like line w versus Z compared to theory

Beiersdorfer et al. PRA 2015
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K-shell measurements: H-like lines 

• Transitions of H-like K-shell 
emission is usually taken from:
- Garcia & Mack, JOSA (1965)

(Z = 1 to 20)
- John & Soff, ADNDT (1985)

(Z = 1 to 100)

• Essentially all measurements 
agree with Johnson & Soff results 
within error.

• Calculations of Johnson & Soff are 
the regularly accepted standard. 

Compare J & S and G & M and MPIK EBIT 
measurement for Lya1 and Lya2
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K-shell measurements: Emission energies of DR 
satellites

Perseus spectrum measured with Hitomi’s SXS 
with theoretical satellite contribution

Hitomi Collaboration 2018 PASJ

• Positions of resonance lines are 
not the only lines that are 
important, satellite lines are also 
important. 

• Satellite lines and higher-n lines 
are not as well tested, although 
some measurements exist, for 
example Beiersdorfer et al., (1993).

• Some satellite lines are not 
resolvable spectroscopically. 

• Can be resolved by sweeping 
beam in an EBIT.



14
LLNL-PRES-835633

K-shell measurements: Emission energies of DR satellites

Electron Beam energy versus Photon emission 
energy for Maxwellian sweep at LLNL’s EBIT-I

• Using broad band calorimeter, we can 
measure the photon emission as a function of 
electron beam energy.

• The photon energy of the DR satellite lines 
can be resolved by sweeping the beam. 

Corresponding sulfur Hea spectrum with 
measured DR contribution for kT = 1.1 keV

• EBIT measurements where of DR the 
electron beam is swept across the 
resonances have also been completed, for 
example Beiersdorfer, et al., (2015), and 
Shah et al., ApJ (2019). 
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Wavelengths of k-shell transitions in L-shell ions

• Transition energies of innershell
transitions are more uncertain and 
less well studied.

• Can be measured using an EBIT 
alone or coupled to light sources. 

• Innershell lines from more complex 
M-shell ions have also been 
measured at both EBIT and using 
EBITs at advanced light sources.

• Measurements have, for example, 
helped better understand physics 
of ``onion’’-like structure in clumps 
around HMXBs.

Silicon K-shell spectrum measured at 
EBIT-I compared to Chandra spectrum 

from Vela X-1

Hell et al., ApJ (2016)
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Treating uncertainties in wavelengths

• Uncertainties in wavelengths have 
been incorporated into APED (see for 
example, Heuer et al., ApJ 2021).

• Allow lines to move within uncertainty

• One method defines line groups and 
allows their position to move. 

• Can allow for small errors in 
instrument calibration or model so 
they do not affect the source physics 
result.

Modeled and measured He- and H-like 
sulfur spectra

Model w/ defined 
line groups

Modeled & measured

MacDonald et al., HTPD (2022)
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Summary 

•  Transition wavelengths are important for gleaning the most out of  high-
resolution spectra. 

• Wavelengths of strong Fe L-shell transitions are on sound footing, for now.

• He-like and H-like reference energies are well tested at the meV level.
Is this good enough?  

• More work may be needed for transition energies of innershell transitions, such 
as K-shell transitions in L-shell ions, and M-shell transitions in L-shell ions. 

• Including uncertainties in spectral modeling packages is necesssary to 
understand limits of atomic data and help uncover where more laboratory data 
is needed. 

• Although He-like and H-like lines are the best references, all the known 
wavelengths should be used when available to constrain gain scales.

Thank You!
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