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X-ray laboratory astrophysics serves science
enabled by spectroscopy

* Most atomic data for astrophysical x-ray spectroscopy comes down to
line strengths, and transition wavelengths/energies

* In many cases, the most important transition wavelengths can be
measured to the needed precision

* Line strengths for all relevant lines in all relevant environments
cannot be measured, so we need to rely on theory, which therefore
needs to be benchmarked

* When benchmarks indicate that theory does not meet accuracy
requirements, we need to do physics to diagnose the issue



What science is enabled by line strengths?

* Charge balance -> temperature distribution (or ionization parameter)
* DR line strengths -> temperature, ...

* Elemental abundances

* Metastable diagnostics, e.g. density

* Optical depth effects, e.g. resonance scattering



How well do we need to know line strengths?

e Of course this depends on science requirements!

» But for example if your question is “easy”, e.g. is O / Fe strongly
supersolar, then the requirements are not strong

* Or if you want to diagnose high densities, lines from metastable levels
are quite sensitive

* On the other hand if you want precision diagnostics rather than
gualitative, you need precision data

e Resonance scattering is almost always a marginal effect in
astrophysics, and really requires high-precision data (10% or better)



Key example: Resonance scattering

* Clusters of galaxies are mostly dark matter (by mass)
* Most of the baryonic mass is diffuse hot gas

* This gravitational potential of the dark matter is converted into
thermal energy in the hot gas

* The very-low-density, highly-ionized, hot gas radiates x-rays

* The plasma is mostly optically thin to its own x-ray emission (it is very
low density)

* But the volume is enormous, and perhaps in strong resonance lines of
abundant elements the optical depth is no longer negligible



Key example: Resonance scattering

* Groups of galaxies are similar to clusters but smaller and therefore
cooler

* Some giant elliptical galaxies are also basically similar (hot gas in the
potential well of dark matter), but smaller and cooler yet

* Optical depth is linearly proportional to density, while surface
brightness scales with density squared

e Optical depth (at line center) also depends on velocity dispersion

e Constraints on plasma density, size, and turbulence thus come from
brightness, Doppler broadening, and resonance scattering!



data-model

Resonance scattering in the Perseus cluster
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Resonance scattering in the Perseus cluster
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Resonance scattering in giant elliptical

galaxies

 Xu+2002, Werner+2009,
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What is actually limiting the model accuracy?
How can we test and improve models?

* Direct uncertainty on oscillator/collision strengths of resonance lines?
* Collision strengths of other lines that resonance lines are compared
to?

* |s method for treatment of excitations important? (i.e. treatment of collision
physics — distorted wave vs. R-matrix)

* Are all processes and levels that we need in the models? (completeness)

* Uncertainty due to blending, e.g. with DR satellite lines

* How to use lab measurements to diagnose these issues? What are
the limitations of experiments?



Princeton Large Tokamak Results
Beiersdorfer+2004

TABLE 1

RaTIO OF THE INTENSITY OF THE Fe xvit 35 — 2p TRANSITION 3F TO THAT OF
THE 3d — 2p TransiTioN 3C, As WELL As THE RATIO OF T™HE SuMm oF ALL
35 — 2p Transrrions (LiNes 3F, 3G, anp M2) To THAT oF LiNe 3C
INFERRED FROM TOKAMAK MEASUREMENTS

Intensity (arb. units)

Source Lie/Ee Lrssgema/Be Lp/Ee

PLT...
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DITE"................
JET® (e
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0.52 = 0.06
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0.7+0.1
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0.7+0.1
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2.50+0.30
1.88 +0.23
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047 £0.10
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Can’t you just do Tokamak experiments?

e Sure! It seems obvious that in many ways this is the closest thing to
directly “simulating” APEC models (i.e. a CIE plasma, more or less)

* Actually there are a lot of limitations:
 How uniform? Other non-ideal effects (CX, ...)
* Densities too high compared to (most) astrophysics

* Biggest limitation: if you find a discrepancy between theory and
experiment, and you are sure the experiment is “correct”, how do you
know which part of theory is going wrong?



Atomic physics experiments with EBITs

* EBITs (electron beam ion traps) can be used to produce, trap, and
study highly charged ions of arbitrary charge state

* The electron beam energy is quasi-monoenergetic, and is chosen to
create desired charge states and probe desired physics

* Simplest experiments: attach one or more spectrometers, and study
emission of ions in trap caused by electron impact

* Even better: put bright synchrotron x-rays through EBIT axis, exciting
and/or ionizing trapped ions, and study fluorescence; also can
exctract ions from trap to study photoionization



EBITs: produce, trap, excite, ions
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Measurement of absolute electron impact
cross sections using LLNL EBIT
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Theoretical polarization predictions can be

benchmarked with crystal spectrometers
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FIG. 1. Crystal-spectrometer spectra of lines w, x, y, and z in
heliumlike Ti*** and lines ¢ and r in lithiumlike Ti'®* excited by a
4800-eV electron beam. (a) Spectrum obtained with a Si(220) crys-
tal at a Bragg angle of 43.1°; (b) spectrum obtained with a Si(111)
crystal at a Bragg angle of 24.7°. Unlabled features are inner-shell
satellites from lower charge states.

Beiersdorfer+ 1999
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Improved measurement of cross sections
using an x-ray calorimeter
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Measurement of Fe XXV linewidth at Petra Il
DESY/Hamburg
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Agrees with theory to within error bars (few %)!
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What about Fe XVII?

* Long history of measurements in MCF plasmas, sun, astrophysics and
EBITs

* Plenty of disagreement, but perhaps some of this is expected, e.g.
due to real astrophysical effects like optical depth?

e But there were disagreements between different EBIT experiments,
and also between different theoretical approaches



Livermore EBIT measurements

Brown+1998: 3C/3D ~ 3.0
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Ne-like ion 3C/3D ratios

* Brown+2001 measured 3C/3D as
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Fe XVII absolute cross sections

* Measure strong lines of Fe XVII
simultaneously with weak N

radiative recombination features — T 0] ey
* RR lines are thought to have 5 ool some $ %01
. > ] £ a0
better understood cross sections 2 B ol
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Fe XVII absolute cross sections

e Results: resonance line 3C is
overpredicted by theory;
intercombination line 3D is
better matched

* The problem seems to be in the

continuum!

* This implies fundamental issues
with atomic structure - previous
theoretical efforts focused on

1000 2000
energy (eV)

other effects



Dielectronic Recombination and Resonance EXc.

3d

Fe XVII 3d-2p transition (3d)
This experiment (DR)
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Resonance Excitation and Cascades

3s (3G + 3F + M2) DW theory looks fine ...

The 3s emission is fully dominated by

o
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Spectroscopy using EBITs

o 208 g
Electron beam drives ionization, “a OQ)".;‘D

excitation, and recombination,
foacd |

same as coronal plasmas

nelectron ~ 109_13 /Cm3 é
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Image: S. Bernitt




Spectroscopy using EBITs

production and trapping of ions
photo-excited trapped ions

same as coronal plasmas
nelectron ~ 109_13/Cm3
N, ~ 108-8 Jcm3

~ monochromator

electron

Key advantage : collector

purely photonic excitation
suppresses uncertainties arising
from collisional excitation
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electron
gun

Image: S. Bernitt




LCLS Stanford campaign (2012)

(World’s first and most powerful FEL Free Electron Laser)

Image: J. Crespo



FLASH-EBIT at soft X-ray beamline (LCLS)
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Measurement Technique

EBIT: production and trapping of highly charged ions
X-ray laser: photo-excited trapped highly charged ions

magnet coils

monochromator

electron
gun

Bernitt et al., Nature 492, 225 (2012)

Fluorescence photon energy in eV

FEL photon energy in eV



Experiment solves (serious) old problem

Bernitt et al., Nature 492, 225 (2012)
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Experiment solves (serious) old problem (May be?)

week ending

PRL 113, 143001 (2014) PHYSICAL REVIEW LETTERS 3 OCTOBER 2014
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Astrophysical Line Diagnosis Requires Nonlinear Dynamical Atomic Modeling
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Non-equilibrium modeling of the Fe XVII 3C/3D ratio for an
intense X-ray free electron laser?!
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Problem 1: Non-linear Dynamics?

Femtosecond X-ray laser with
intensities above ~10'?2 W/cm?,
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PETRA Ill Synchrotron at DESY, Hamburg
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Improvement in Resolution:
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e Capella (Chandra HETG) FWHM ~ 1.0 eV

| CLS/XFEL (Bernitt et al. (2012)) FWHM ~ 1.0 eV
Present work (PETRA Ill/P04) FWHM ~ 0.12 eV

Resolved Fe'!>* C-line for

the first time Fe xvi 3C
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Measurement technique
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Final result vs. Exp. vs. Obs.
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Results on the Fe XVII problem (2018 campaign|

v Low oscillator strengths are still a root cause of this problem (as our
previous experiment found).
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What's next for the Fe XVII problem?

- Improvements In signal to noise ratio
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Improving signal to noise ratio (2019 campaign|
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Improving resolving power to 14000
(2019 campaign|
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Further improvements (5x) in SNR by
Installing ion extraction system (2020 campaign)
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Improving resolving power to 20000
(2020 campaign|

== \/0igt Model
= (Gauss Model

® Exp. (Fel®* 30Q)

3C

=%t '3“

i '!|m1:| .il' = ‘ || # Y
T 1] e 1‘ Ili’ilh !‘ iillill
“‘ i !il |
I r

825.4 825.6 825.8 826.0 826.2 826.4
X-ray energy (eV)

m
et
-
)
o
-
©
P
et
0
C
)
]
C




Comparing signal-to-noise and resolution achieved In
during PETRA lll beamtimes 2018 - 2020
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Improving resolving power to 20000
(2020 campaign|

Fe XVII 3C & 3D

-
=
S
ke,
2
=
@
3]
C
@
0
0
o)
| .
o
=
s

811.8 812.0 812.2 812.4 812.6 812.8 813.0 813.2 815.0 815.2 815.4 825.6 825.8 826.0 826.2

Fe XVIB & C




)

Ign

3C/3D ratio (2020 campa

Final results

(1207) eAouoIzeg k- (0202) W]
(1207) n
(0Z02) M3uaiag
(0Z07) eaocuOIyEG
(0207) uewrer]
(6107) 3121g N\
(6102) n
(9107) eunysaIQ —o— (9007) umoig

—<— (2107) B1uIag

2> 1 2) star( 7 ) sys

3

—— (9007) umorg

(S107) LGN euejueg
(S107) 1D euejuES o
(¥107) uossuof
(Z107) ueuLep
(6002) LIGIN ND
(6007) MA DD o

== (1007) umoig

f (3C) / f(3D)

R
)
&
]

RY;
o

T

(S002) Yoo1 e
(€007) Buo( e

(9661) eIIseey] o
o (F661) dMUIC
(Z661) eHIRYY] *
(6861) Sueyz e

Astrophysical
observations

L) = . . L0 < 10
<t < (@\ (q\] —

onel Y)3ua1)s-I03e[[dso (0¢/DE




Final results: 3C & 3D natural linewidth measurement

Zhang (1989)
Bhatia (1992)
Cornille (1994)
Kaastra (1996)
Safronova (2001)

Loch (2005)
Chen (2007)

Gu DW (2009)
Gu MBPT (2009)
Jonsson (2014)

Santana MBPT (2015)

Oreshkina (2016)
Mendoza (2017)
Wu (2019)

Wu Breit (2019)

Harman (2020)
Safronova (2020)
Berengut (2020)
Gu (2021)
Safronova (2021)

Dong (2003) Santana CI (2015)
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Experimental result: 10.92 +/- 1.75 meV
% @

T

T

Experiment (meV) Theory (meV)
) g ¥
15.27(247) 14.74(1)
4.22(68 4.028(15
16.42(301 14.43'
20.52(380) 23.107




Comparing signal-to-noise and resolution achieved In
different PETRA Il beamtimes

Campaign 2018 2019 2020

Number of scans 6+11 74 60
Resolving Power E/AE (FWHM) 14000 20000
Signal-to-noise ratio ~ 8.5 ~ 45
Model used Gaussian ~ Voigt Voigt
3C /3D oscillator-strength ratio 3.09 3.1-3.5 3:51

Statistical uncertain +2.58% £1.00% +0.57%
Systematical uncertainties

ROI selection +1.8% X X
Background instabilities £1.0% X X
Photon flux variation +2.0% X X
Area underestimation of Gaussian

profiles fitted to Voigt lines +4% X X
Detection efficiency uncertainty +0.13%  £0.13% £0.13%
Asymmetric line shape X X +0.003%
Monochromator interpolation errors +2.0% +2.0%  £2.0%
Charge-state equilibrium changes X X X

Final 3C/3D oscillator-strength ratio  3.097713  3.3(2) 3.51(7)




Final remarks on Fe XVII

v’ Several improvements in our experiments enabled us to achieve N
measuring 3C/3D oscillator strengths - that

v' Finally, the Fe XVII 3C/3D oscillator-strength ratio problem is resolved!

3 === \/0igt Model
v' Most important remark: — Gauss Model

_’g 9§ Exp. (Fel6+ 3C)
- Our work exposes how critical is 5
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What's next

* While the 3C/3D oscillator strength ratio problem is solved, the
collision strengths now need another look (experiment and theory)

* The Fe XVII oscillator strength measurement was not a wild goose
chase! The theory community came together and produced
converged calculations that agree with each other and with
experiment. Calculations from > 10 years ago were often not
converged. We now know what it takes to get structure right!

* We can still push linewidth measurements further: need improved
characterization of monochromator line shape, and continuous
monitoring of relative wavelength shift (drift, encoder errors)



Lessons learned

* There’s a lot of insight to be gained by pushing the state of the art in
developing new experiments to help answer old questions

* But you have to be prepared to pay the price of developing these
techniques

* To have productive benchmarks of theory, it’s best to have
collaboration between multiple different theory groups comparing to
available experiments, with the aim of constructively diagnosing
issues in both theory and experiment



What's next for the Fe XVII problem?
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