XMM-Newton Calibration Updates

Michael Smith, ESAC IACHEC on-line meeting 23 May 2022

XMM calibration releases over 2021/22

	XMM-CCF-REL-		
Astrometry:	time variable boresight updates	380, 387	
RGS:	bad pixels, gain, CTI	381, 383, 385	
EPIC:	effective area correction (EPIC-MOS - EPIC-pn)	382	
	effective area correction (EPIC-pn - NuSTAR)	388	(see talk by Felix Fuerst)
	EPIC-pn energy scale	389	(see talk by Ivan Valtchanov)
OM:	grism time dependent sensitivity	386	

RGS: contamination

Contamination estimated from the flux of RX J1856-357 at long wavelengths.

Observed flux decrease not explained by C_8H_8 contamination.

Empirical corrections in place.

Work ongoing to understand reason of Aeff loss.

RGS: wavelength scale

AB Dor, Capella, HR 1099: Revolution 2500 3000 3500 ABDOR CAPELLA 20 HR1099 10 0 -10 -20 Shift (mÅ) ABDOR CAPELLA 20 HR1099 10 0 -10 -20 2018 2020 2014 2016 2012 Year

EPIC: effective area

MOS Build up of contaminant, esp. MOS2

Based on 1E 0102.2-7219

EPIC: updated A_{eff} correction

Recalibration of the CORRAREA correction: an empirical correction of MOS A_{eff} to PN

Sample of ~ 120 sources:		1.4
 On-axis, point source, non-piled up 		1.3
Per observation:	Z	1.2
Derive best-fit PN model	LL.	1.1
 Apply PN model to MOS1 & MOS2 		1.0
Per instrument, stack		0.9 1.4 0.
 Data Model (= expected cts + scaled bkg) 		1.3
Determine stacked data / model ratios and normalise to PN	11	1.2
Determine stacked data / model ratios and normalise to PN	2	1.1
Derive energy-dependent A _{eff} correction function (spline) to minimise residuals:		1.0
• correction to MOS $A_{eff} > 2.0 \text{ keV}$		0.9 1.4
 null correction < 2.0 keV (where redistribution effects may 		1.3

be significant)

1.2

1.0

0.9

М2

EPIC: updated A_{eff} correction

Recalibration of the CORRAREA correction: an empirical correction of MOS A_{eff} to PN

Sample of ~ 120 sources:

• On-axis, point source, non-piled up

Per observation:

- Derive best-fit PN model
- Apply PN model to MOS1 & MOS2

Per instrument, stack

- Data
- Model (= expected cts + scaled bkg)

Determine stacked data / model ratios and normalise to PN

Derive energy-dependent A_{eff} correction function (spline) to minimise residuals:

- correction to MOS $A_{eff} > 2.0 \text{ keV}$
- null correction < 2.0 keV (where redistribution effects may be significant)

M2

Σ

7

OM: grism time-dependent degradation

Measurements of spectra of 3 standard stars in 6 wavelength bands in each grism.

Decline of sensitivity corrected in SAS; calibration updated to 2024 in (XMM-CCF-REL-386 released 03/12/21)

OM grism throughput in 2024.0

Grism	Throughput
UV	0.86
VIS	0.90

OM: monitoring time-dependent degradation (filters)

OM throughput at 2030

Filter	Throughput
V	0.86
В	0.89
U	0.89
UVW1	0.86
UVM2	0.81
UVW2	0.78

Declines continue to slow in all filters.

Degradation is corrected in SAS.

