XMM-Newton Quiescent Particle Background (Primarily a MOS perspective)

K.D. Kuntz & S.L. Snowden

Quiescent Particle Background QPB composed of two components - lines & "continuum" Both of which vary strongly from chip to chip (Even excluding the anomalous states!)

Quiescent Particle Background

- Lines:
 - Strength known to be spatially variable
 - Strength known to depend on s/c location (Tiengo)
 - Shape and recorded energy varies over course of mission (Gain shifts, CTI effects, etc.)

 \rightarrow One can't background spectrum from one era to subtract from an object spectrum taken from a different era \rightarrow large residuals

Quiescent Particle Background

- Continuum:
 - Spectral shape temporally variable (Kuntz & Snowden 2008)
 - Spectral shape spatially variable (?)

• Want to characterize spectral shape as function of time and location on the detector.

Quiescent Particle Background

- Continuum:
 - Spectral shape temporally variable (Kuntz & Snowden 2008)
 - Result not wrong but not entirely correct either
 - In part due to unrecognized anomalous state data
 - Spectral shape spatially variable (?)
 - Difficult to determine as the filter-wheel closed data limited
 - Revisit this issue briefly at the end
 - Of course, Fabio may then tell us I'm wrong!
 - Want to characterize spectral shape as function of time and location on the detector.

•"Corner" Data \rightarrow temporal variation

- From outside the FOV that is shielded from cosmic X-rays and lower energy particles (such as those producing the SPF).
- Come "free" with (almost) every observation

QPB Data Statistics

Which data to use to characterize the spectral shape?

		FWC			Corner	
Chip	Exposure	0.35-12.	2.5-5.0	Exposure	0.35-12.	2.5-5.0
		Band	Band		Band	Band
	MS	10 ⁵ Cnt	10 ⁵ Cnt	MS	10 ⁵ Cnt	10 ⁵ Cnt
1-1	1.84	4.33	0.73			
1-2	1.84	4.60	0.80	332.1	152.7	26.9
1-3	1.23	2.64	0.46	247.2	98.8	17.1
1-4	0.57	0.97	0.17	60.7	25.8	4.5
1 - 4A	0.23	2.94	0.43	271.5	165.0	23.7
1-5	0.89	1.85	0.32	139.4	87.8	15.3
1-5A	0.72	2.57	0.43	192.7	131.6	21.9
1-6	0.63	1.01	0.18	92.1	31.4	5.5
1-7	1.84	4.37	0.77	332.2	161.7	28.6
2-1	1.82	4.18	0.70			
2-2	1.58	3.83	0.64	254.7	115.3	19.5
2-2A	0.14	0.53	0.09	78.3	37.1	5.9
2-3	1.82	4.07	0.70	332.6	131.8	22.4
2-4	1.82	4.08	0.70	333.0	233.7	37.9
2-5	0.69	1.44	0.25	98.1	63.5	11.1
2-5A	0.35	3.23	0.46	234.8	199.8	26.6
2-6	1.82	4.13	0.71	332.5	154.2	26.1
2-7	1.82	4.28	0.73	332.9	166.6	28.1

• The corner data provide a much higher S/N characterization of the QPB background than the filter-wheel closed (FWC) data.

Temporal Variability

The QPB rate as determined from the corner data has a long term variation due to anti-correlation with the solar activity

Temporal Variability

Consider the corner data from a well-behaved chip, MOS1-7.

• The hardness ratio (HR) = 2.5-5.0 keV/0.4-0.8 keV does not appear to vary with QPB rate (R)

• However if

- we assume a constant HR
- simulate the entire database of corner data for this chip,
- compare distribution of HR from simulation with measured HR dist.
- a KS test indicates that they do not have the same distribution!
- True distribution of HR broader than expected

IACHEC 5/22

Quiescent Particle Background QPB composed of two components - lines & "continuum" Both of which vary strongly from chip to chip (Even excluding the anomalous states!)

Temporal Variability

Consider the corner data from a well-behaved chip, MOS1-7.

• The hardness ratio (HR) = 2.5-5.0 keV/0.4-0.8 keV does not appear to vary with QPB rate (R)

• However if

- we assume a constant HR
- simulate the entire database of corner data for this chip,
- compare distribution of HR from simulation with measured HR dist.
- a KS test indicates that they do not have the same distribution!
- True distribution of HR broader than expected

IACHEC 5/22

Sources?

- Epoch
 - Due to change in the detectors with age?
 - Partially degenerate with the solar cycle
- QPB Rate (R)
 - QPB rate \leftrightarrow change GCR population \leftrightarrow particle population spectrum
 - Degenerate with solar cycle
- Normalized QPB Rate (R- $\langle R \rangle = \Delta R$)
 - At any given epoch the distribution of R is asymmetric with high tail
 - (Finally something not degenerate with everything else!)
- Spacecraft Location
 - Known that different near-Earth locations show different particle populations
 - One can't use the physical (X,Y,Z) location of the s/c!
 - Variation in solar wind pressure moves the location of the magnetopause and different particle populations
 - A lesson learned from study of the soft proton problem

IACHEC 5/22

Sources?

- Epoch
 - Due to change in the detectors with age?
 - Partially degenerate with the solar cycle
- QPB Rate (R)
 - QPB rate \leftrightarrow change GCR population \leftrightarrow particle population spectrum
 - Degenerate with solar cycle
- Normalized QPB Rate (R- $\langle R \rangle = \Delta R$)
 - At any given epoch the distribution of R is asymmetric with high tail
 - (Finally something not degenerate with everything else!)
- Spacecraft Location
 - Known that different near-Earth locations show different particle populations
 - One can't use the physical (X,Y,Z) location of the s/c!
 - Variation in solar wind pressure moves the location of the magnetopause and different particle populations
 - A lesson learned from study of the soft proton problem

It's Location

Take all corner data, determine s/c location wrt the magnetopause and bowshock in one minute intervals

Find that the rate (R) not dependent on location, but ΔR is! Particularly high within magnetopause on sunward side of the Earth

Evidence of the Radiation Monitor ΔR variation well correlated with the LE1 channel (160 keV<E_e<1.0 MeV, 1.0 MeV<E_p<1.5 MeV) but not with the LE2 channel (1.0 MeV<E_e<1.5 MeV, 1.5 MeV<E_p<4.5 MeV)

But is ΔR related to changes in HR? Extract the QPB spectrum from different ranges of ΔR and compare (As spectrum/spectrum ratios)

Is ΔR All There Is? Spectral shape (and HR) is a function of ΔR (though not a pretty one!)

For a constant range of ΔR , at least for E>0.35 keV, we don't see significant variation in the spectrum with epoch, rate, or s/c location.

Does the Variation Make A Difference?

Extracted QPB spectra based on a number of different criteria

Name	Selection Criteria ^a	Exposure	χ^2_{ν}	ν
		(Ms)		
Fiducial	Regions D&E, $-0.35 < \Delta R / 10^{-10} < 0.15$	217	1.092	863
High DE	Regions D&E, $0.15 < \Delta R / 10^{-10} < 0.65$	19.9	1.057	862
High A	Region A, $1.15 < \Delta R / 10^{-10} < 2.15$	0.893	1.048	863
High Rate	Regions D&E, $-0.35 < \Delta R / 10^{-10} < 0.15$, $R / 10^{-10} < 2.22$, Rev<1000	45.5	1.099	861
Low Rate	Regions D&E, $-0.35 < \Delta R/10^{-10} < 0.15$, $R/10^{-10} > 3.41$, $1100 < \text{Rev} < 2200$	54.6	1.059	862
Early Epoch	Regions D&E, $-0.35 < \Delta R/10^{-10} < 0.15$, $2.04 < R/10^{-10} < 2.52$, $750 < \text{Rev} < 1100$	15.0	0.972	862
Late Epoch	Regions D&E, $-0.35 < \Delta R / 10^{-10} < 0.15$, $2.04 < R / 10^{-10} < 2.52$, $2200 < \text{Rev} < 2550$	15.6	1.025	862

Fitted a functional form to a low ΔR fiducial spectrum in 0.35-10. keV. Simulated each of the extracted spectra for different exposure times, fitted the fiducial functional form, and calculated χ^2 as a function of time.

Does the Variation Make A Difference? Extracted QPB spectra based on a number of different criteria Fitted a functional form to a low ΔR fiducial spectrum in 0.35-10. keV. Simulated each of the extracted spectra for different exposure times, fitted the fiducial functional form, and calculated χ^2 as a function of time. With the exception of the most extreme spectrum (High A), at exposure times of 100 ks, the change in χ^2 is negligible.

For most spectra the fiducial QPB spectrum is sufficient!

Spatial Variation

If the corner data is well represented by a single "fiducial" spectral shape

- each chip having it's own fiducial
- each observation having its own offset

How well does the corner represent the QPB spectrum in the FOV?

- For E>0.35 keV
- with the exception of MOS1-1 RAWX>500,

then reasonably well.

Summary

It would appear that the QPB spectrum shape is more temporally stable than previously understood.

For the corner data, *most* observations are characterized by a single fiducial QPB spectrum.

- This is true on a chip-by-chip basis
- Any given observation will have a slightly different normalization

Observations that are not well characterized by the fiducial QPB spectrum

- Have a strong ΔR determined from contemporary data
- In absence of contemporary data (i.e., brand new observation) one can get a good guess at ΔR from the s/c location and the solar wind pressure.

The corner spectra appear to represent the FOV spectra well; most are within 1σ of mean FOV spectrum.