Spatial and temporal variations of the Chandra ACIS particle-induced background and development of a spectral-model generation tool

Hiromasa Suzuki

(Konan U., Japan), P. P. Plucinsky, T. J. Gaetz (CfA), A. Bamba (U. Tokyo)

H. Suzuki @IACHEC 2022

Based on Suzuki et al. 2021, A&A

https://doi.org/10.1051/0004-6361/202141458

A&A 655, A116 (2021) https://doi.org/10.1051/0004-6361/202141458 © ESO 2021

Spatial and temporal variations of the *Chandra* ACIS particle-induced background and development of a spectral-model generation tool*

H. Suzuki^{1,2}, P. P. Plucinsky³, T. J. Gaetz³, and A. Bamba^{1,4}

- ¹ Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail: hiromasa050701@gmail.com
- ² Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan
- ³ Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
- ⁴ Research Center for the Early Universe, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received 28 May 2021 / Accepted 25 August 2021

ABSTRACT

Context. In X-ray observations, estimating the particle-induced background is important, especially for faint and/or diffuse sources. Although software exists to generate total (sky and detector) background data suitable for a given *Chandra* ACIS observation, no public software exists to model the particle-induced background separately.

Aims. We aimed to understand the spatial and temporal variations of the particle-induced background of Chandra ACIS obtained in the two data modes, VFAINT and FAINT.

Methods. Observations performed with ACIS in the stowed position shielded from the sky and the *Chandra* Deep Field South (CDE S) data sets were used. The spectra were modeled with a combination of the instrumental lines of A1. Si. Ni. and Au and

Purpose and Method

- Purpose

Predicting the particle-induced background spectrum of ACIS for an arbitrary observation Particularly important for diffuse & faint sources

Method

- Use data in which background is dominant (cal. data & blank-sky: ~8 Ms)
- Investigate the time and spatial dependence of the background spectra
- Develop a tool to predict the background spectral model for an arbitrary observation

Data sets

Blank-sky observations

Chandra Deep Field South (CDF-S)

ACIS-stowed observations				Observation ID	Date	Exposure (ksec)
			ACIS out of the	8591	2007-09-20	45.43
		9593		2007-09-22	46.43	
Observation ID	Date	Exposure (ksec)		9718	2007-10-03	49.38
62850	2002-09-03	52.49	particle-induced	8593	2007-10-06	49.49
62848	2003-05-04	47.46	background	8597	2007-10-17	59.28
62846	2003-12-08	45.86	events	8595	2007-10-19	115.42
62836	2004-11-04	46.62	ovente	8592	2007-10-22	86.64
62831	2005-06-10	47.20		8596	2007-10-24	115.12
62824	2005-11-13	47.17		9575	2007-10-27	108.69
62823	2006-06-01	44 11		9578	2007-10-30	38.57
62819	2006-11-18	47.29		8594	2007-11-01	141.40
62816	2007-05-28	46.28		9596	2007-11-04	111.89
62815	2007-03-28	46.45		12043	2010-03-18	129.58
62814	2007-11-08	40.45		12123	2010-03-21	24.79
62813	2008-11-03	40.72		12044	2010-03-23	99.53
62812	2008-11-03	49.02		12128	2010-03-27	22.80
62012	2009-00-18	12 29		12045	2010-03-28	99.72
62810	2009-00-19	12.30		12129	2010-04-03	77.14
62800	2009-11-04	49.80		12135	2010-04-06	62.53
62809	2010-03-06	45.60		12046	2010-04-08	78.02
62808	2010-11-12	47.38		12047	2010-04-12	10.14
62804	2011-07-12	47.45		12137	2010-04-16	92.78
62802	2011-11-09	50.56		12138	2010-04-18	38.53
62678	2012-06-15	47.38		12055	2010-05-15	80.68
62668	2015-12-09	47.38		12213	2010-05-17	61.29
62667	2016-09-26	10.64		12048	2010-05-23	138.10
62666	2016-10-14	9.00		12049	2010-05-28	86.94
62665	2016-11-03	9.10		12050	2010-06-03	29.66
62664	2016-12-08	9.11		12222	2010-06-05	30.64
			-	12219	2010-06-06	33.66
25 observations (~1 Ms)				12051	2010-06-10	57.29
	- \	/		12218	2010-06-11	87.98
				12223	2010-06-13	100.71

H. Suzuki @IACHEC 2022 ... ~120 observations (~7 Ms)

Analysis: spectral model

Spectral model includes: (Bartalucci et al. 2014)

- AI, Si, Ni and Au fluorescence lines as zero-width Gaussians
- "frame store lines" as broad Gaussians
- continuum (power-law, broken power-law, exponential and broad Gaussians)

Events produced by photons which convert in the frame store array (not the imaging array)

Energy (keV)

1.487

1.557

1.740

2.123

2.118

2.205

2.410

7.478

7.461

8.265

8.494

9.713

9.628

11.442

11.585

Analysis: spatial variation

Spatial variation: (Bartalucci et al. 2014)

- flux and spectral shape (mainly frame store lines) vary along CHIPY axis

H. Suzuki @IACHEC 2022

Analysis: spatial variation

Spatial variation:

- flux and spectral shape (mainly frame store lines) vary along CHIPY axis
- each chip divided into 32 regions along CHIPY, and modeled (phenomenologically)

Analysis: time variation

Time variation:

- ACIS-stowed count rate varies depending on the solar activity
- < 10% variation of hardness ratio is modeled based on ACIS-stowed obs. set</p>

Background spectra generation tool: *mkacispback* https://github.com/hiromasasuzuki/mkacispback

INPUT:

level2 fits with analysis region (region file etc.)

Merge the template models corresponding to the analysis region & Hardness ratio modification depending on total event rate

OUTPUT: local model package

H. Suzuki @IACHEC 2022

mkacispback: demonstration

Comparison: data vs. mkacispback

Data: total ACIS-stowed & blank-sky observations

<5% accuracy for continuum, < 10% accuracy for lines

Comparison: data vs. mkacispback

Data: observation of a supernova remnant (faint & diffuse source)

OBSID: 13807

Summary

- Particle-induced background of Chandra is investigated using 14-year ACIS-stowed & blank-sky observations (~8 Ms in total)
- Spatial & temporal variations are modeled (phenomenologically)
- Background spectrum generation tool *mkacispback* is developed

https://github.com/hiromasasuzuki/mkacispback

mkacispback

A software to generate spectral models for Chandra ACIS particle-induced background. Version: 2021-07-15 Author: Hiromasa Suzuki (The University of Tokyo) hiromasa050701 (at) gmail.com

Requirements:

- c++11 compiler (ver. 4.2.1, 4.8.5 tested)
- python (ver. 3.0 or later reguired; 3.5.4, 3.6.8, 3.8.5 tested) with "astropy" library
- CIAO (ver. 4.10, 4.11, 4.12, 4.14 tested)
- HEAsoft (ver. 6.20, 6.26, 6.27, 6.29 tested)

How to use the software:

1. Set three environment variables as below:

```
export ACISPBACK=</path/to/this directory>
export ACISPBACK_PYTHON=</path/to/python**>  # python with astropy library (ex. "export ACISPB/
export ACISPBACK_GXX=</path/to/g++**>  # g++ which supports c++11 (ex. "export ACISPBACK_GXX=/u
```

2. Copy the executable file "mkacispback" to /usr/local/bin (or somewhere in the \$PATH).

Analysis: time variation

Time variation:

- ACIS-stowed data flux showed a negative correlation with the solar activities
- < 10% variation of hardness ratio is modeled based on ACIS-stowed obs. set</p>

Modeling time variation of spectral shape

Here, we modeled the hardness-ratio variations only for the BI CCDs. As a simple model of this temporal variation of the spectral shapes, we let the continuum level in $\approx 1.0-7.0$ keV $(N_{1.0-7.0 \text{ keV}})$ vary with respect to the other spectral components (let this be $N'_{1.0-7.0 \text{ keV}}$) depending on the count rate in 9.0–11.5 keV $(R_{9.0-11.5 \text{ keV}})$ as Free parameters

$$N_{1.0-7.0 \text{ keV}}' = N_{1.0-7.0 \text{ keV}} \left(\frac{R_{9.0-11.5 \text{ keV}}}{R_0}\right)^{\alpha},$$
(3)

1–7 keV normalization is modified

Background spectra generation tool: *mkacispback* https://github.com/hiromasasuzuki/mkacispback

Description of the mkacispback tool

OUTPUT: XSPEC spectral model "acispback"

Comparison: data vs. mkacispback

Data: total blank-sky observations

- Estimated unresolved CXB intensities (in erg s⁻¹ cm⁻² deg⁻²):
 - 3.10 (2.98–3.21) × 10^{-12} (2–8 keV)
 - 8.35 (8.00-8.70) × 10⁻¹² (1-2 keV)
- consistent with or lower than Hickox & Markevitch (2006), Bartalucci et al. (2014), Luo et al. (2017)

Point-source removed ~7 Msec blank-sky (CDF-S) image

H. Suzuki @IACHEC 2022

