1. Introduction: The AC statistic and the significance of nested
model components

Similar to the the Ax? statistic for Gaussian data, the
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statistic 1s asymptotically distributed as x?(m), thanks to the Wilks
theorem, where m is the number of free parameters. This is expected to
be true for any number of counts-per-bin, therefore even in the limit

of gparse data when neither |C__or C. are individually x?’-distributed

(see Sect. 16.4 in Bonamente 2022).

It is uselful to emphasize dertain mathematical requirements tol use such
likelihood-ratio statistics as AC and Ax? to determine the significance
of a model compondant (see Protassov et al 200Z2):

(a) the additional model component must be nested

(b) the null vialue of the model |parameter (s) may not be at| the
boundaries of the allowed parameter space. (For example, you may not
use AC for an absorption line component, 1f the normalization |1s not
allowed to be positive too.)
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2. Systematic errors and what to do when the goodness-of-fit
statistic is not acceptable: the overdispersed chi-square
distribution.

It dsia gommon sijtuarion that theigogdness off fiit; infthisicage C_I;

is not acceptable, yet the model generally follows the data without
systematic trends. In such cases, it |is possible to consider whether
thene are other sources of variance in the daga that have not |been
considered.

For Gaussian data, y, ~ Gauss(ui,ai), the traditional route 1is to
identify additional sources of variance, oiﬁ , and typically add these
variances prior to the ML regression,
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additional variance, unlike in the case of Gaussian data. This is an
intrinsic limitation of the Polisson regression. Motivated by this
limitation, I have developed a new method to account for systematic
errors in the Poisson ML regression (Bonamente 2023).
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The method is based on introducing an intrinsic model variance associated
with the model itself, while retaining the Poisson distribution for the
data. This means that the parent model mean
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1s no longer| a fixed| (yet unknown) number, buft it is & random |variable. Tt
is necessary to estimate this intrinsic variance from the data. This can be

accdmplished by| setting |al gogl for the total wariance|off [thel ¢ | statiptic
as
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1s a design variance that ensures consistency with the data (for example,
require consistency of C . at a preset p-value). In practice, this means
treating the fit statistic as the sum of two random variables,
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The C, .. fit statistic is now distributed as an overdispersed x,(v, o,

distribution, which is the convolution of a x?(V) distribution with an N{(0, E%Z).
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To estimate the intrinsic variance in the model, it can be shown that is
possible to connect the two variances in (3) and (4) via

o | 17l 1 lol 1 (5] 3 1|7 (5)

This results in a simple estimate of the intrinsic model variance from the
data, based on a design variance o-_.
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distribution, where m is the number of additional parameters in the nested component
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