ACIS Gain Calibration with Cas A

Nick Durham, Akos Bogdan, Hans Moritz Günther

- Time-Dependent Gain Changes
- Motivation
- AP Source Data, Method, Application

ACIS TGain Correction

- Time-dependence due to changes in CTI
- Time-dependent corrections historically derived from ECS bright Al-Kα, Ti-Kα, and Mn-Kα line positions produced by ⁵⁵Fe source which fully illuminates both ACIS-I and ACIS-S
- Line positions measured in 32x128 pixel tiles for each chip, at cold focal plane temperatures, on regular intervals* and released via dated CALDB file
- TGain corrections defined as shifts from Jan 2000 measured line positions

ACIS TGain Correction

- Time-dependence due to changes in CTI
- Time-dependent corrections historically derived from ECS bright Al-Kα, Ti-Kα, and Mn-Kα line positions produced by ⁵⁵Fe source which fully illuminates both ACIS-I and ACIS-S
- Line positions measured in 32x128 pixel tiles for each chip, at cold focal plane temperatures, on regular intervals* and released via dated CALDB file
- TGain corrections defined as shifts from Jan 2000 measured line positions

FI CTI largely driven by solar activity

High-energy particle backround reduced by solar wind High-energy background provides sacrificial charge to CTI traps, reducing loss of event pulse height

TGain with ECS

- ▶ ⁵⁵Fe decay with 2.7 year ½ life
- Chandra has been flying for 23 years!
- 2023 very few counts in ECS despite efforts to to improve statistics:
 - Binning up in time from $3 \rightarrow 6 \rightarrow 12$ -months of cumulated exposure •
 - Binning up spatially from 32x128 pixel tiles \rightarrow 32x256
 - Relaxing focal plane temperature constraints from -120° : -119° C \rightarrow -120° : -117° C

TGain with ECS

- ACIS Gain Calibrated Spec
 - >66% of pixels within +/- 0.3% of nominal LineE
 - 2023+ relaxed to +/- 0.6%
- Al-Kα and Ti-Kα S/N precludes further usefulness
- Mn-Kα also nearing end-of-life

ECS "bright" lines @ I3 Aimpoint from 2022 TGain CalFile release

Simulation depicting 2022 ACIS-I3 gain accuracy @ Mn-K $\!\alpha$

Search for Astrophysical Calibration Source

Complicated spectrum Si velocities -4,000 to +6,000 km/sec (-13eV to + 20eV) Evolving spatially

Search for Astrophysical Calibration Source

IACHEC 2023 slide 7

Search for Astrophysical Calibration Source

IACHEC 2023 slide 8

*226	13	2/28/2000	2.7	ksec
*233	I3	2/28/2000	1.3	ksec
*234	13	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	13	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	I3	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	13	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	13	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	13	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	13	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	I3	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	I3	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	53	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1./	ksec
*6082	53	10/23/2005	1.2	ksec
*6/3/	13	3/22/2006	1./	ksec
*0/38	53	3/22/2006	1.2	ksec
*0/45	53	10/15/2006	1.2	ksec
*0744	13	10/15/2006	1.7	ksec
*8369	53	3/10/2007	1.3	ksec
*0508	13	3/10/200/	1./	KSEC
*9099	55 72	3/24/2008	1.2	ksec
*9098	12	5/24/2008	1./	ksec
*10042	12	5/10/2009	1.0	ksec
*10643	22	2/10/2009	1.3	ĸsec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	13	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	13	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	13	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

*226	13	2/28/2000	2.7 ksec
*233	13	2/28/2000	1.3 ksec
*234	I3	2/28/2000	1.3 ksec
*235	13	2/28/2000	1.3 ksec
*230	S3	2/28/2000	2.0 ksec
*236	S3	2/28/2000	1.0 ksec
*237	S3	2/28/2000	1.0 ksec
*194	13	5/19/2000	3.4 ksec
*198	S3	5/21/2000	2.5 ksec
*1547	S3	1/09/2001	1.0 ksec
*1545	13	1/15/2001	1.5 ksec
*1548	S3	7/13/2001	1.0 ksec
*1546	13	7/13/2001	1.4 ksec
*2870	S3	2/06/2002	1.0 ksec
*2869	13	2/6/2002	1.4 ksec
*2877	S3	8/30/2002	1.0 ksec
*2876	13	8/31/2002	1.4 ksec
*3696	13	3/17/2003	1.7 ksec
*3697	S3	3/17/2003	1.1 ksec
*3703	13	10/19/2003	1.5 ksec
*3704	S3	10/19/2003	1.1 ksec
*5162	13	3/15/2004	1.4 ksec
*5163	S3	3/15/2004	1.1 ksec
*5155	13	11/01/2004	1.6 ksec
*5156	S3	10/29/2004	1.1 ksec
*6067	13	4/13/2005	1.7 ksec
*6068	S3	4/12/2005	1.2 ksec
*6081	13	10/23/2005	1.7 ksec
*6082	S3	10/23/2005	1.2 ksec
*6737	13	3/22/2006	1.7 ksec
*6738	S3	3/22/2006	1.2 ksec
*6745	S3	10/15/2006	1.2 ksec
*6744	13	10/15/2006	1.7 ksec
*8369	S3	3/10/2007	1.3 ksec
*8368	13	3/10/2007	1.7 ksec
*9699	S3	3/24/2008	1.2 ksec
*9698	13	3/24/2008	1.7 ksec
*10642	13	5/10/2009	1.8 ksec
*10643	S3	5/10/2009	1.3 ksec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	I3	2/28/2000	1.3	ksec
*235	I3	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	I3	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	I3	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	I3	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	I3	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	I3	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	I3	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	13	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	13	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	13	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

*226	13	2/28/2000	2.7	ksec
*233	13	2/28/2000	1.3	ksec
*234	13	2/28/2000	1.3	ksec
*235	13	2/28/2000	1.3	ksec
*230	S3	2/28/2000	2.0	ksec
*236	S3	2/28/2000	1.0	ksec
*237	S3	2/28/2000	1.0	ksec
*194	13	5/19/2000	3.4	ksec
*198	S3	5/21/2000	2.5	ksec
*1547	S3	1/09/2001	1.0	ksec
*1545	13	1/15/2001	1.5	ksec
*1548	S3	7/13/2001	1.0	ksec
*1546	13	7/13/2001	1.4	ksec
*2870	S3	2/06/2002	1.0	ksec
*2869	13	2/6/2002	1.4	ksec
*2877	S3	8/30/2002	1.0	ksec
*2876	13	8/31/2002	1.4	ksec
*3696	13	3/17/2003	1.7	ksec
*3697	S3	3/17/2003	1.1	ksec
*3703	13	10/19/2003	1.5	ksec
*3704	S3	10/19/2003	1.1	ksec
*5162	13	3/15/2004	1.4	ksec
*5163	S3	3/15/2004	1.1	ksec
*5155	13	11/01/2004	1.6	ksec
*5156	S3	10/29/2004	1.1	ksec
*6067	13	4/13/2005	1.7	ksec
*6068	S3	4/12/2005	1.2	ksec
*6081	13	10/23/2005	1.7	ksec
*6082	S3	10/23/2005	1.2	ksec
*6737	13	3/22/2006	1.7	ksec
*6738	S3	3/22/2006	1.2	ksec
*6745	S3	10/15/2006	1.2	ksec
*6744	13	10/15/2006	1.7	ksec
*8369	S3	3/10/2007	1.3	ksec
*8368	13	3/10/2007	1.7	ksec
*9699	S3	3/24/2008	1.2	ksec
*9698	13	3/24/2008	1.7	ksec
*10642	13	5/10/2009	1.8	ksec
*10643	S3	5/10/2009	1.3	ksec

Nick Durham

CXC Calibration

IACHEC 2023 slide 18

Cas A 32x128 pixel fits

- Reprocess each ObsID without TGain corrections
- Shift PHA of each event by Si velocity corresponding to SkyXY position
- Fit Si positions in chipXY tiles for each ObsID using simple model:
 powlaw + Si He-like gaussian + Si H-like gaussian

Filling in the Illumination Gaps

- Use Principle Component Analysis [PCA] to scale TGain spatial structure using Si positions where Cas A is bright enough to measure
- Prep:
 - Convert TGain pattern from each epoch to 256x1 array (32x128 regions)
 - PCA accurately describes spatial pattern with 5 components (base vectors)
 - 1st components describes largest variations ex. node boundaries
 - Remaining components describe decreasingly important modifications to recreate the structure
- Spatial structure for any given TGain epoch can be recreated with only a few uniquely scaled PCA components

Nick Durham CXC Calibration IACHEC 2023 slide 20

Filling in the Illumination Gaps

- Scaling factors calculated from tiles with available measurements
 - 👲 number of tiles measurements return 🖢 accuracy filling the missing unmeasured chip tiles

Si position interpolated from ECS AI & Ti positions compared to PCA prediction

Chip location: Y= 385:512 X= 1:1024 Spatial map of Si created with 1x pointing of Cas A to scale PCA components

Measured Si positions for 9x offset pointings of Cas A

IACHEC 2023 slide 21

ACIS TGain Observing Plan 2023+

Low-Energy Si

2 ksec Cas A Observations once per year x10 (each ACIS CCD)

High-Energy:

Proposed Fe measurements of Perseus

More information on PCA as applied to ACIS Gain:

Principal component analysis of the Chandra ACIS gain

Hans Moritz Günther^a, Ákos Bogdán^b, and Nick Durham ^b

^aMIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ^bSmithsonian Astrophysical Observatory, Cambridge, MA 02138, USA

