Neutron star Interior Composition ExploreR

A NICER Look at Cross-calibration using 3C 273 and the Crab Jeremy Hare (NASA/GSFC/CRESST/CUA) on behalf of the NICER team

NOOG

1) NICER Calibration Obs 2) NICER Background 3) 3C 273 observing campaign 4) Procedure 5) Results 6) Crab Peak 7) Summary

NICER Cross-Calibration Observations

~115 Simultaneous observations of calibration targets (e.g., RX J1856-3754, Sco X-1)

NICER Cross-Calibration Observations

~quasi-simultaneous observations of science targets

NICER/NuSTAR350 total observationsNICER/XMM196 total observationsNICER/Chandra187 total observationsNICER/Swift1718 total observations

Hundreds of non-simultaneous observations of non-variable calibration targets (e.g., Cas A, 1E 0102.2-7219)

Background

- NICER is a non-imaging instrument so no simultaneous background is obtained
- Must rely on blank sky backgrounds and/or background
 models to subtract background

5

Two ways of handling background

NICER + SEXTANT

ASA · GSFC

- Break parameter space into cells, measure background in each shell (library of spectra)
- Application: calculate exposure in each shell, make weighted sum of library spectra

Template Model: SCORPEON

- Measure "basis vector" of each unique component
 - Make smoothed version of template as XSPEC model
- Normalized based on known telemetry (overshoots, etc)
- Application: predict norms from telemetry & load into XSPEC

A glimpse of Scorpeon

NICER + SEXTANT

ANSA- GSFC.

NICER background Example 3c 273

NICER + SEXTANT

STELLARUM, SCIENTIA ET

ANSA · GSFC

Mostly Agree to sometimes disagree

Obs.	Bkg	ObsID	$N_{ m H}$	Γ_1	E_{break}	Γ_2	$F_{0.5-10\ \mathrm{keV}}$	$\chi^2/{ m dof}$
			47.00	$10^{20} { m ~cm^{-2}}$	keV		$10^{-11}~{ m cgs}$	
NIC	\mathbf{Sco}	2010100101	1.79^{b}	2.02(1)	1.0^{b}	1.72(1)	8.45(8)	150.1/150
NIC	3C50	2010100101	1.79^{b}	2.03(3)	1.0^{b}	1.71(1)	8.51(8)	109.9/114
NIC	\mathbf{Sco}	2010100102	1.79^{b}	2.00(1)	1.0^{b}	1.735(7)	8.28^{+4}_{-6}	113.7/177
NIC	3C50	2010100102	1.79^{b}	2.01(2)	1.0^{b}	1.728(7)	8.32(4)	106.9/129
NIC	\mathbf{Sco}	3010100101	1.79^{b}	2.06(1)	1.0^{b}	1.630(6)	9.98(5)	172.5/175
NIC	3C50	3010100101	1.79^{b}	1.99(2)	1.0^{b}	1.661(6)	9.71(5)	160.2/130
NIC	\mathbf{Sco}	5010100105	1.79^{b}	2.15(1)	1.0^{b}	1.67(1)	7.89(5)	160.6/156
NIC	3C50	5010100105	1.79^{b}	2.07(3)	1.0^{b}	1.72(1)	7.55(5)	114.4/117

NICER + SEXTANT

STELLARUM, SCIENTIA

ASA+ GSFC

IACHEC Observing Campaign 3C 273

IACHEC Observing Campaign 3C 273

7 total epochs since launch of NICER

TIME	NIC_ID	NU_ID	NU_S	CH_ID	$\rm CH_S$	XMM_ID	XMM_S	SW_ID_1	SW_S_1
57931	10100101	10302020002	S	19867	S	414191301	S	50900023	S
57931	10100102	10302020002	\mathbf{S}	19867	\mathbf{S}	414191301	\mathbf{S}	50900024	\mathbf{S}
57932	10100103			19867	NS	414191301	\mathbf{NS}		
58304	1010100104	10402020006	\mathbf{S}	20709	\mathbf{S}	414191401	\mathbf{S}	50900025	\mathbf{S}
58304	1010100105	10402020006	\mathbf{S}	20709	\mathbf{S}	414191401	\mathbf{S}	50900025	\mathbf{S}
58667	2010100101	10502620002	\mathbf{S}	21815	NS	810820101	\mathbf{S}	50900026	\mathbf{S}
58667	2010100102	10502620002	\mathbf{S}	21815	\mathbf{S}	810820101	\mathbf{S}	50900027	\mathbf{S}
59036	3010100101	10602606002	\mathbf{S}	22828	\mathbf{S}	810821501	\mathbf{S}	89029001	\mathbf{S}
59037	3010100102	10602606002	\mathbf{S}	22828	NS	810821501	\mathbf{S}	89029002	\mathbf{S}
59319	3626010102	60601004002	\mathbf{S}						
59319	3626010103	60601004002	\mathbf{S}						
59375	4010100101	10702608002	\mathbf{S}	24585	NS	810821601	\mathbf{S}	50900028	\mathbf{S}
59375	4010100102	10702608002	\mathbf{S}	24585	\mathbf{S}	810821601	\mathbf{S}	50900029	\mathbf{S}
59376	4010100103			24585	NS	810821601	\mathbf{NS}		
59758	5010100105	10802608002	\mathbf{S}	25691	\mathbf{S}	810821901	\mathbf{S}	89372001	\mathbf{S}

First NICER observation of 3C 273

First observation light curves

13

Procedure

- Followed Madsen et al. (2017)
- Spectra extracted from each observatory following standard procedures (e.g., reprocessing, cleaning)
- Spectra binned to 1 count per bin for use with C-stat
- Spectra fit in 1-5 keV energy range
- Updated HI4PI N_H maps give 1.69x10²⁰ cm⁻² (HI4PI collab. et al. 2016)
- N_H fixed to 1.79x10²⁰ cm⁻² using Wilms abundances (Wilms et al. 2000) and Verner cross-sections (Verner et al. 1996)
- C-stat used for fitting spectra
- Chi-square/d.o.f. reported by loading in best-fit cstat model and using 50 cts/bin data

Preliminary Results

Table 2. Fits performed in the 1-5 keV energy range using cstat.

Obs.	Bkg	ObsID	$N_{ m H}$	Г	$F_{\rm 1-5\ keV}$	$\chi^2/{ m dof}$
			$10^{20} \ {\rm cm}^{-2}$		$10^{-11}~{\rm cgs}$	
NIC	3C50	10100101	1.79	1.591(7)	5.14(2)	378.5/379
NIC	\mathbf{Sco}	10100101	1.79	$1.570\substack{+0.008\\-0.007}$	5.19(4)	402.3/392
NIC	3C50	10100102	1.79	1.551(4)	5.41(1)	337.0/397
NIC	\mathbf{Sco}	10100102	1.79	1.551(4)	5.38(3)	372.9/396
$\rm XMM_{\rm PN}$	\mathbf{Sub}	0414191301	1.79	1.585(5)	4.18(1)	858.0/799
$\rm XMM_{\rm M1}$	Sub	0414191301	1.79	1.604(7)	5.08(2)	803.1/668
$\rm XMM_{\rm M2}$	\mathbf{Sub}	0414191301	1.79	1.593(7)	5.26(2)	741.8/677
CXO	\mathbf{Sub}	19867	1.79	1.51(1)	5.58(4)	69.7/232
\mathbf{Swift}	Sub	00050900023	1.79	1.35(6)	5.0(1)	20.4/27
\mathbf{Swift}	\mathbf{Sub}	00050900024	1.79	1.32(4)	5.7(1)	28.1/29

Preliminary Results

More or less consistent with results from Madsen et al. (2017)

Preliminary NuSTAR+NICER

Oddities

NICER + SEXTANT

ANSA · GSFC

Oddities and Questions

- XMM pile-up
- Swift Light curves

Crab pulsar observing campaign

Crab pulsar observing campaign

NICER + SEXTANT

STELLARUM, SCIENTIA

ANSA · GSFC

TIME	NIC_ID	NU_ID	NU_S	CH_ID	CH_S	XMM_ID	XMM_S	SW_ID_1	SW_S_1
58190	1013010125	10402001004	S			811022501	NS	50100040	S
58191	1013010126	10402001008	\mathbf{S}			811022501	\mathbf{S}	50100042	\mathbf{S}
58725	2013010106	10502001015	\mathbf{S}			811023401	\mathbf{NS}	88840002	\mathbf{S}
58371	1013010138					811022701	\mathbf{NS}		
58724	2013010105	10502001013	\mathbf{S}			811023401	\mathbf{S}		
58068	1013010110	10302001005	\mathbf{S}						
57999	1013010108								
58553	2013010101	10502001008	\mathbf{S}			811023101	\mathbf{S}	88840001	\mathbf{S}
58025	1011010201					793980301	\mathbf{S}		
59822	5013010104	10802303004	\mathbf{S}			811025001	\mathbf{NS}		
58373	1013010140	10402001012	\mathbf{S}			811022701	\mathbf{NS}		
58373	1013010139					811022701	\mathbf{NS}	59032002	\mathbf{S}
58068	1013010111								
58066	1013010109								

- Motivation
- Wilson-Hodge et al. (2011) showed a 7% decline in hard X-ray flux
- This can lead to issues with absolute calibration due to flux variations over time
- Proposed solution: Use the pulsed emission from the Crab instead

NICER+NuSTAR Crab pulse peak

- Simultaneous Crab observations
- Fold the data using Jodrell Bank monthly ephemeris
- Use phase-resolved spectroscopy to extract spectrum from pulse peak
- Less sensitive to variations in PWN

Preliminary Results

Obs.	\mathbf{Bkg}	ObsID	$N_{ m H}$	Г	Const.	$\chi^2/{ m dof}$
			$10^{21} {\rm ~cm^{-2}}$		A/B	
NIC	None	2013010106	3^a	1.97(1)	1.0^{a}	72.68/84
Nu	\mathbf{Sub}	10502001015	3^a	2.03(1)	0.646(0.015)/0.627(0.015)	56.12/63

- NICER has taken part in 6 (7 with NuSTAR) calibration observing campaigns of 3C 273
- Analysis of these is observations is ongoing with preliminary results consistent with Madsen et al. (2017) so far
- Exploring using the pulsed Crab emission to avoid variability of nebula
- I appreciate any feedback, questions, and/or suggestions!