IACHEC XV : Bad Endorf : 25 Apr 2023

## Problems of High-Resolution: Background, atomic lines, statistics

### VINAY KASHYAP (CfA/CXC/CHASC)

- \* High-resolution spectra come with unintuitive challenges: sparsity, detectability, and background
- set upper limits on line fluxes

Zhang, Algeri, Kashyap, Karovska (2023 MNRAS 521, 969) https://arxiv.org/abs/2302.00718

\* Future application to calibration problems: HRC degap, evaluating background models



## \* Walk through of example analysis of HRC-S/LETG observation of RT Cru to



## **SPARSITY**

In the era of XRISM, ARCUS, LEM, etc., we will have more than enough weak sources observed at spectral resolutions currently limited to X-ray bright sources.

*Top*: LEM line spectrum of a star with  $f_X=10^{-13}$ erg/s/cm<sup>2</sup> in 10 ks.

*Middle/bottom*: All that rich information will be completely missed, with even background confounding even the brighter lines.



|      | 4   |     |
|------|-----|-----|
|      |     |     |
|      |     |     |
|      |     |     |
| •••  | ••• | ••• |
|      |     |     |
|      |     |     |
| <br> |     |     |
|      |     |     |

# how well do you know your background?

## ACTUAL **f**(**x**)

## ASSUMED g(x)







# how well do you know your background?

## ACTUAL **f**(**x**)

## ASSUMED g(x)



 $f(x) = g(x) \cdot [f(x)/g(x)]$  $f(x) = g(x) \cdot d(G^{-1}(x);F(x),G(x))$ where F and G are cdfs





# how well do you know your background?

## ACTUAL **f**(**x**)

## ASSUMED g(x)

This is the *skew-G density model*, a non-parametrically designed parametric modeling of  $d(\cdot)$  the comparison density with e.g., shifted Legendre polynomials — more terms, more complex.



 $f(x) = g(x) \cdot [f(x)/g(x)]$  $f(x) = g(x) \cdot d(G^{-1}(x);F(x),G(x))$ where F and G are cdfs



### DETECTABILITY

When there are a lot of bins, there can be a lot of large fluctuations.

*Top*: HRC-S/LETG spectrum of RT Cru (black), with best-fit model (including background) in red. Question: is the model spectrum a fair representation of the data, or are there lines left unrecognized?

*Middle*: Distribution of binned counts (black) and expected distribution based on model (red). Yeah, nah.









| Regions of interest $(W_r)$ | т | Bonferroni<br>(Sidak) | K<br>(Sidak)    | Nai<br>(Sida |
|-----------------------------|---|-----------------------|-----------------|--------------|
| $\overline{W_1}$            | 3 | 0.0001 (0.0011)       | 0.0071 (0.0397) | 0.0045 (0    |
| $W_2$                       | 3 | 1.0816e-18            | 2.7907e-15      | 3.3306       |
|                             |   | (1.0817e-17)          | (2.9976e-14)    | (2.4980      |
| $W_3$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (     |
| $W_4$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (     |
| $W_5$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (1    |
| $W_6$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (     |
| $W_7$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (     |
| W <sub>8</sub>              | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (     |
| Wo                          | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000 (1    |

Testing for difference from background

ak) 0.0621)6e-15 0e-14) 1.0000)1.0000)1.0000) 1.0000)1.0000)1.0000) 1.0000 (1.0000)



| Regions of interest $(W_r)$ | т | Bonferroni<br>(Sidak) | K<br>(Sidak)    | Na<br>(Si |
|-----------------------------|---|-----------------------|-----------------|-----------|
| $\overline{W_1}$            | 3 | 0.0001 (0.0011)       | 0.0071 (0.0397) | 0.0045    |
| $W_2$                       | 3 | 1.0816e-18            | 2.7907e-15      | 3.330     |
|                             |   | (1.0817e-17)          | (2.9976e-14)    | (2.498    |
| $W_3$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_4$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_5$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_6$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_7$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_8$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |
| $W_9$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.0000    |

## Testing for difference from background Testing for lines at nominal locations

|                             | <b>U</b>          |                |
|-----------------------------|-------------------|----------------|
| Regions of interest $(W_r)$ | Local<br>p-values | Sida<br>correc |
| $W_3$                       | 0.4810            | 0.98           |
| $W_4$                       | 0.1143            | 0.57           |
| $W_5$                       | 0.3247            | 0.93           |
| $W_6$                       | 0.0385            | 0.24           |
| W <sub>7</sub>              | 0.2612            | 0.87           |
| $W_8$                       | 0.5000            | 0.99           |
| W9                          | 0.5000            | 0.99           |
|                             |                   |                |

aive idak) (0.0621)06e-15 80e-14) (1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)(1.0000)





| Regions of interest $(W_r)$ | т | Bonferroni<br>(Sidak) | K<br>(Sidak)    | N<br>(S |
|-----------------------------|---|-----------------------|-----------------|---------|
| <i>W</i> <sub>1</sub>       | 3 | 0.0001 (0.0011)       | 0.0071 (0.0397) | 0.004   |
| $W_2$                       | 3 | 1.0816e-18            | 2.7907e-15      | 3.33    |
|                             |   | (1.0817e-17)          | (2.9976e-14)    | (2.49   |
| $W_3$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| $W_4$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| $W_5$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| $W_6$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| $W_7$                       | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| W <sub>8</sub>              | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
| W9                          | 0 | 1.0000 (1.0000)       | 1.0000 (1.0000) | 1.000   |
|                             |   |                       |                 |         |

## Testing for difference from background Testing for lines at nominal locations

|                             | U                 |                |
|-----------------------------|-------------------|----------------|
| Regions of interest $(W_r)$ | Local<br>p-values | Sida<br>correc |
| $W_3$                       | 0.4810            | 0.98           |
| $W_4$                       | 0.1143            | 0.57           |
| $W_5$                       | 0.3247            | 0.93           |
| $W_6$                       | 0.0385            | 0.24           |
| $W_7$                       | 0.2612            | 0.87           |
| $W_8$                       | 0.5000            | 0.99           |
| $W_9$                       | 0.5000            | 0.99           |

## Setting upper limits to lines

| Regions $(W_r)$  | 50% upper<br>Local | limits via LRT<br>Sidak adjusted | 90% upp<br>Local | er limits via<br>Sidak adjı |
|------------------|--------------------|----------------------------------|------------------|-----------------------------|
| $\overline{W_3}$ | 29.93              | 39.42                            | 48.91            | 53.29                       |
| $W_4$            | 20.00              | 26.43                            | 32.36            | 39.52                       |
| $W_5$            | 24.02              | 30.14                            | 35.32            | 43.80                       |
| $W_6$            | 22.62              | 28.08                            | 34.71            | 39.39                       |
| $W_7$            | 17.90              | 24.17                            | 29.71            | 35.98                       |
| $W_8$            | 17.84              | 24.80                            | 30.30            | 36.25                       |
| <i>W</i> 9       | 37.83              | 21.87                            | 63.57            | 76.83                       |









The "known detector effect" is degap. The source position had drifted on to a part of the detector with less well-determined position corrections.

Raw positions are corrected to remove gaps.





The "known detector effect" is degap. The source position had drifted on to a part of the detector with less well-determined position corrections.

Raw positions are corrected to remove gaps.





HRC-S Data and Model



# HRC degap: the plan

- Cross validate degap solutions
- \* Test for spatial variability (degap is assumed fixed along perpendicular direction)

## \* Test for temporal variability (suspected, but innocent until proven guilty)

### CalStats WG \*

- \* Legendre polynomials
- https://github.com/xiangyu2022/LPBkg \*
- https://github.com/xiangyu2022/Symbiotic-Star-RT-Cru-Analysis \*

## \* Hi-Res WG

- Crucial to know where the lines are expected to be \*
- Background WG \*
  - Tool to verify background models



New method to look for departures from expected spectral model based on smooth test for number of shifted

