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Problems of High-Resolution:

Background, atomic lines, statistics

VINAY KASHYAP (CfA/CXC/CHASC)



Briefly…

❖ High-resolution spectra come with unintuitive challenges: sparsity, 
detectability, and background

❖ Walk through of example analysis of HRC-S/LETG observation of RT Cru to 
set upper limits on line fluxes

Zhang, Algeri, Kashyap, Karovska (2023 MNRAS 521, 969) https://arxiv.org/abs/2302.00718


❖ Future application to calibration problems: HRC degap, evaluating 
background models

https://arxiv.org/abs/2302.00718


SPARSITY

In the era of XRISM, 
ARCUS, LEM, etc., we 
will have more than 
enough weak sources 
observed at spectral 
resolutions currently 
limited to X-ray bright 
sources.

Top: LEM line spectrum 
of a star with fX=10-13 
erg/s/cm2 in 10 ks.  

Middle/bottom: All that 
rich information will be 
completely missed, 
with even background 
confounding even the 
brighter lines. 
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how well do you know your background? 

ACTUAL f(x)

ASSUMED g(x)

f(x) = g(x) ⋅ [f(x)/g(x)]

f(x) = g(x) ⋅ d(G-1(x);F(x),G(x))

where F and G are cdfs

This is the skew-G density model, a non-parametrically designed 
parametric modeling of d(⋅) the comparison density with e.g., 
shifted Legendre polynomials — more terms, more complex.



DETECTABILITY

When there are a lot of 
bins, there can be a lot 
of large fluctuations.

Top: HRC-S/LETG 
spectrum of RT Cru 
(black), with best-fit 
model (including 
background) in red.  
Question: is the model 
spectrum a fair 
representation of the 
data, or are there lines 
left unrecognized?

Middle: Distribution of 
binned counts (black) 
and expected 
distribution based on 
model (red).  Yeah, nah.
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Table 4. Summary of our background correction results for each calibration region. The first two columns are the combined calibration regions and corresponding 
combined wavelength ranges.The third column reports the number, m , of coefficients selected out of M = 10, for each of the combined regions considered. The 
p-values adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing via Sidak (see 18 ) are given in 
the fourth, fifth, and sixth columns, respectively. The size of the source-free sample N w for each of the combined regions w = 1, . . . , 5 are given in the last 
column. 
Combined Wavelength m Bonferroni K Naive N w 
regions ( C w ) range in Å (Sidak) (Sidak) (Sidak) 
C 1 1.65–2.05 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 6879 
C 2 5.5–10.2 1 3.7687e-10 

(1.8843e-09) 3.7687e-10 
(1.8843e-09) 3.6797e-06 

(1.8398e-05) 75699 
C 3 11.5–13.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 22809 
C 4 14.6–17.4 1 0.0004 (0.0020) 0.0004 (0.0020) 0.0796 (0.3396) 41 186 
C 5 18.5–23.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 63 372 
Sidak adjusted p-values calculated as in ( 18 ) with R = 9 are 
reported in parenthesis. Recall that our estimator and test statistics are 
constructed by sorting the estimated coefficients ̂ θ( j ) in ( 4 ). Hence, 
choosing m to be the point of truncation implies that inference and 
estimation are performed considering only the m largest estimated 
coefficients. 

F or re gions W 1 and W 2 , the Bonferroni, and K adjusted p- 
values are smaller than the global significance level α = 0.05 
even after implementing Sidak’s correction. Whereas, the p-values 
adjusted for post-selection by means of the naive method, only detect 
significant deviations o v er re gion W 2 . As discussed in detail in 
Section 4.3 , this result is not surprising since the naive approach 
is the most conserv ati ve among the three methods considered. 
The adjusted p-values for the remaining regions are all equal to 
one. This implies that our smooth tests analysis allows us to 
claim that deviations from the background occur only on regions 
W 1 and W 2 . 

The results obtained on the region W 1 are consistent with those of 
Luna & Sokoloski ( 2007 ). These are known features, arising in inner 
accretion disc perhaps, and their detection here is a confirmation that 
the method is working. 

To gain a better understanding of the nature of the deviation from 
the background model detected on region W 2 , we rely on the so- 
called Comparison Density plot or CD-plot (e.g. Algeri & Zhang 
2021 ) shown in Fig. 3 . The CD-plot allows us to visualize where 
the data distribution deviates significantly from the hypothesized 
distribution (in our case, the re-calibrated background density). It 
displays the estimated comparison density (dark green solid line) 

and which, for region W 2 specifies as 
̂ d (u ; ̂ B W 2 , F 2 ) = 0 . 9500 + 2 . 1577 u − 5 . 2749 u 2 + 2 . 9179 u 3 , (19) 

where u = ̂ B W 2 ( x). Whereas, the green bands are the standard errors 
of ̂ d ( ̂ B W 2 ( x); ̂ B W 2 , F 2 ) obtained by simulating from the estimator 
in ( 19 ) as described in Algeri & Zhang ( 2021 ). The grey bands 
correspond to the 99 % confidence bands under the null hypothesis 
of background only. If the estimated comparison density is within 
the confidence bands, o v er the entire range considered, we conclude 
that there is no significant departure from the background model. 
Conv ersely, we e xpect significant deviations to occur in regions 
where the estimate lies outside the confidence bands. It is worth 
emphasising that the CD-plot provides us a representation of the 
data in the quantile domain; that is, it displays the transformed data 
u i = ̂ B W 2 ( x i ), i = 1, . . . , 3311, and their estimated density. Such 
representation ensures that the most substantial departures of the 
data distribution from the expected model are magnified and those 
due to random fluctuations are smoothed out. More details on the 
construction and discussion of the CD-plot can be found in Algeri & 
Zhang ( 2021 , Algorithm 1) and Algeri ( 2020 , Section V A). 

For the specific case of Region W 2 , the CD-plot in Fig. 3 suggests 
that significant departures from ̂ b W 2 occur within the range of x ∈ 
[6.1, 7.9] Å. This detection, ho we ver, cannot be attributed to any 
known spectral features, and it corresponds to the signature of the 
Chandra optics Iridium absorption edge and is detectable because we 
are not assuming a particular spectral model here. It is worth pointing 
out that the departure below one at x ! 9.1 Å is due to the fact that, 

Table 5. Summary of our signal detection results for each region of interest using smooth tests. The second column 
shows the number, m , of coefficients selected out of M = 10, for each of the nine regions considered. The p-values 
adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing 
via Sidak (see 18 ) are given in the third, fourth and fifth columns, respectively. 
Regions m Bonferroni K Naive 
of interest ( W r ) (Sidak) (Sidak) (Sidak) 
W 1 3 0.0001 (0.0011) 0.0071 (0.0397) 0.0045 (0.0621) 
W 2 3 1.0816e-18 

(1.0817e-17) 2.7907e-15 
(2.9976e-14) 3.3306e-15 

(2.4980e-14) 
W 3 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 4 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 5 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 6 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 7 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 8 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 9 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
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Table 4. Summary of our background correction results for each calibration region. The first two columns are the combined calibration regions and corresponding 
combined wavelength ranges.The third column reports the number, m , of coefficients selected out of M = 10, for each of the combined regions considered. The 
p-values adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing via Sidak (see 18 ) are given in 
the fourth, fifth, and sixth columns, respectively. The size of the source-free sample N w for each of the combined regions w = 1, . . . , 5 are given in the last 
column. 
Combined Wavelength m Bonferroni K Naive N w 
regions ( C w ) range in Å (Sidak) (Sidak) (Sidak) 
C 1 1.65–2.05 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 6879 
C 2 5.5–10.2 1 3.7687e-10 

(1.8843e-09) 3.7687e-10 
(1.8843e-09) 3.6797e-06 

(1.8398e-05) 75699 
C 3 11.5–13.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 22809 
C 4 14.6–17.4 1 0.0004 (0.0020) 0.0004 (0.0020) 0.0796 (0.3396) 41 186 
C 5 18.5–23.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 63 372 
Sidak adjusted p-values calculated as in ( 18 ) with R = 9 are 
reported in parenthesis. Recall that our estimator and test statistics are 
constructed by sorting the estimated coefficients ̂ θ( j ) in ( 4 ). Hence, 
choosing m to be the point of truncation implies that inference and 
estimation are performed considering only the m largest estimated 
coefficients. 

F or re gions W 1 and W 2 , the Bonferroni, and K adjusted p- 
values are smaller than the global significance level α = 0.05 
even after implementing Sidak’s correction. Whereas, the p-values 
adjusted for post-selection by means of the naive method, only detect 
significant deviations o v er re gion W 2 . As discussed in detail in 
Section 4.3 , this result is not surprising since the naive approach 
is the most conserv ati ve among the three methods considered. 
The adjusted p-values for the remaining regions are all equal to 
one. This implies that our smooth tests analysis allows us to 
claim that deviations from the background occur only on regions 
W 1 and W 2 . 

The results obtained on the region W 1 are consistent with those of 
Luna & Sokoloski ( 2007 ). These are known features, arising in inner 
accretion disc perhaps, and their detection here is a confirmation that 
the method is working. 

To gain a better understanding of the nature of the deviation from 
the background model detected on region W 2 , we rely on the so- 
called Comparison Density plot or CD-plot (e.g. Algeri & Zhang 
2021 ) shown in Fig. 3 . The CD-plot allows us to visualize where 
the data distribution deviates significantly from the hypothesized 
distribution (in our case, the re-calibrated background density). It 
displays the estimated comparison density (dark green solid line) 

and which, for region W 2 specifies as 
̂ d (u ; ̂ B W 2 , F 2 ) = 0 . 9500 + 2 . 1577 u − 5 . 2749 u 2 + 2 . 9179 u 3 , (19) 

where u = ̂ B W 2 ( x). Whereas, the green bands are the standard errors 
of ̂ d ( ̂ B W 2 ( x); ̂ B W 2 , F 2 ) obtained by simulating from the estimator 
in ( 19 ) as described in Algeri & Zhang ( 2021 ). The grey bands 
correspond to the 99 % confidence bands under the null hypothesis 
of background only. If the estimated comparison density is within 
the confidence bands, o v er the entire range considered, we conclude 
that there is no significant departure from the background model. 
Conv ersely, we e xpect significant deviations to occur in regions 
where the estimate lies outside the confidence bands. It is worth 
emphasising that the CD-plot provides us a representation of the 
data in the quantile domain; that is, it displays the transformed data 
u i = ̂ B W 2 ( x i ), i = 1, . . . , 3311, and their estimated density. Such 
representation ensures that the most substantial departures of the 
data distribution from the expected model are magnified and those 
due to random fluctuations are smoothed out. More details on the 
construction and discussion of the CD-plot can be found in Algeri & 
Zhang ( 2021 , Algorithm 1) and Algeri ( 2020 , Section V A). 

For the specific case of Region W 2 , the CD-plot in Fig. 3 suggests 
that significant departures from ̂ b W 2 occur within the range of x ∈ 
[6.1, 7.9] Å. This detection, ho we ver, cannot be attributed to any 
known spectral features, and it corresponds to the signature of the 
Chandra optics Iridium absorption edge and is detectable because we 
are not assuming a particular spectral model here. It is worth pointing 
out that the departure below one at x ! 9.1 Å is due to the fact that, 

Table 5. Summary of our signal detection results for each region of interest using smooth tests. The second column 
shows the number, m , of coefficients selected out of M = 10, for each of the nine regions considered. The p-values 
adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing 
via Sidak (see 18 ) are given in the third, fourth and fifth columns, respectively. 
Regions m Bonferroni K Naive 
of interest ( W r ) (Sidak) (Sidak) (Sidak) 
W 1 3 0.0001 (0.0011) 0.0071 (0.0397) 0.0045 (0.0621) 
W 2 3 1.0816e-18 

(1.0817e-17) 2.7907e-15 
(2.9976e-14) 3.3306e-15 

(2.4980e-14) 
W 3 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 4 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 5 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 6 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 7 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 8 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 9 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
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Table 6. Local p-values and adequate multiple hypothesis testing adjust- 
ments when testing for spectral lines via LRTs. 
Regions Local Sidak’s 
of interest ( W r ) p-values correction 
W 3 0.4810 0.9899 
W 4 0.1143 0.5724 
W 5 0.3247 0.9359 
W 6 0.0385 0.2402 
W 7 0.2612 0.8799 
W 8 0.5000 0.9922 
W 9 0.5000 0.9922 
Table 7. 50% and 90% upper limits on different regions using the LRT, 
with and without Sidak’s correction. The 50% upper limits are calculated by 
the proportion of the expected lines η to achieve the power 0.5 (solid line in 
Fig. 4 ) times the sample sizes n r . Similarly, the 90% upper limits are calculated 
by the proportion of the expected lines η to achieve the power 0.9 times the 
sample sizes n r . 
Regions ( W r ) 50% upper limits via LRT 90% upper limits via LRT 

Local Sidak adjusted Local Sidak adjusted 
W 3 29.93 39.42 48.91 53.29 
W 4 20.00 26.43 32.36 39.52 
W 5 24.02 30.14 35.32 43.80 
W 6 22.62 28.08 34.71 39.39 
W 7 17.90 24.17 29.71 35.98 
W 8 17.84 24.80 30.30 36.25 
W 9 37.83 21.87 63.57 76.83 

The probabilities of type I error for each of the procedures 
considered (obtained by setting ηr = 0) are reported in Tables D1 –
D2 . The simulated type I error using Bonferroni adjustment for 
the deviance statistic often exceeds the significance level of 0.05 
in the context of local analysis. It also exceeds the significance level 
αr = 0.0073 in the global analysis; that is when setting the probability 
of false disco v ery across all the sev en re gions to be α = 0.05. 
Conversely, the K -statistic and the naive post-selection adjustment 
for the deviance perform well in controlling the specified significance 
le vel e ven though the naive adjustment appears to be excessively 
conserv ati ve (the respecti ve probability of type I error is al w ays zero 
in the global analysis). This is reflected also in the power curves 
reported in Fig. 4 . The naive approach is the most conservative 
among the three, whereas Bonferroni exhibits the highest power. 

Finally, upper limits are constructed by inverting the power curves 
of the LRT at 50% and 90 % and multiplying the resulting ηr value 
for the sample size, n r (see Table 1 ) of the disco v ery re gion W r , 
for r = 3, . . . , 9. The results are summarized in T able 7 . W e can 
interpret the Sidak adjusted upper limits as the number of samples 
from the expected signal needed to achieve the specified power when 
testing simultaneously regions W 3 –W 9 . For example, for region W 3 , 
our 50 % upper limit computed using the LRT after Sidak correction 
is 40 (39.42). This tells us that if a spectral line at position 12.131 Å
was present, we would need 40 events in this location (out of the 730 
observed in the entire W 3 region) to be able to detect such spectral line 
with power 50%, while simultaneously looking for spectral lines in 
the regions W 4 , . . . , W 9 . Whereas, if we were interested in designing 
a future observation targeting solely region W 3 , our 50 % upper limit 
computed using the (local) LRT is 30 (29.93). This tells us that if 
a spectral line at position 12.131 Å was present, we would need 30 
events at such location to detect it with power 50%, and assuming 
that no other test on other regions is conducted at the same time. 

Similar interpretations can be given to the 90 % upper limits and for 
other regions. 

For the sake of comparison, the upper limits obtained by means of 
smooth tests are reported in Tables D3 –D4 . Not surprisingly, since 
smooth tests do not rely on the specification of a model for the signal, 
they are more conserv ati ve than the LRT. For example, for region W 3 , 
the 50 % upper limits computed using the Bonferroni, K -statistic, and 
the naive methods, and adjusted via Sidak for multiple hypothesis 
testing lead to 53, 64, and 68 events, respectively. 
5  DISCUSSION  
5.1 Advantages and limitations 
We hav e dev eloped a no v el method to detect weak signals 
distinct from a smooth background in high-resolution photon 
counting spectra. This approach anticipates difficulties likely to be 
encountered in the coming era of calorimeter spectra. The method 
is implemented to work with unbinned photon lists that allows the 
full available spectral resolution to be used, though a modification 
to use binned spectra is viable from an algorithmic perspective and 
it is the subject of future work. 

The statistical methodology presented here is particularly advanta- 
geous at high resolution because a precise specification of the source 
model spectrum is often not possible as the information available 
in the data usually exceeds that in the models proposed. Here we 
show that one can indeed exploit this phenomenon by modelling and 
estimating the ‘gap’ between the (potentially misspecified) model 
available and the true spectrum using smooth functions like shifted 
Legendre polynomials. On this note, it is worth emphasizing that, 
as pro v en in Algeri ( 2020 ), the closer the postulated model is to the 
truth, the more accurate (less biased) is the estimate of the latter. It 
follows that, in principle, one could a v oid specifying a model for 
the spectrum and estimate it by means of smooth functions. None 
the less, if a model is av ailable (e ven if misspecified), it should be 
used in order to reduce the gap between the proposed model and the 
truth. 

The implementation currently ignores spectral calibration prod- 
ucts like the ef fecti ve area and the redistribution matrices, and 
therefore cannot be applied to CCD resolution spectra. Furthermore, 
the method relies on a comparison between the smooth model de- 
scription of the source-free background and the source + background 
data sets, so it cannot be applied to cases where the background is 
contaminated by the source or where the background is not smoothly 
varying. 
5.2 Inferences based on RT Cru analysis 
5.2.1 Domain of applicability 
We first note that our method easily detects the presence of significant 
source emission in passband W 1 . This is not surprising, as these lines 
have been identified and analysed by several studies (e.g. Luna & 
Sokoloski ( 2007 ) resolved it clearly in HETGS + ACIS-S spectra; 
and Danehkar et al. ( 2021 ) successfully modelled the triplet in the 
same data set that we use). The chance that a random fluctuation can 
produce a detectable departure from the background is assessed as p 
! 10 −2 after accounting for multiple hypothesis tests (see Table 5 ). 
This serves as a validation of the method, in that a line complex 
known to exist is correctly found. 

An important characteristic of our method is that it is not limited to 
narrow lines. If the source spectrum has a different shape compared 
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Table 4. Summary of our background correction results for each calibration region. The first two columns are the combined calibration regions and corresponding 
combined wavelength ranges.The third column reports the number, m , of coefficients selected out of M = 10, for each of the combined regions considered. The 
p-values adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing via Sidak (see 18 ) are given in 
the fourth, fifth, and sixth columns, respectively. The size of the source-free sample N w for each of the combined regions w = 1, . . . , 5 are given in the last 
column. 
Combined Wavelength m Bonferroni K Naive N w 
regions ( C w ) range in Å (Sidak) (Sidak) (Sidak) 
C 1 1.65–2.05 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 6879 
C 2 5.5–10.2 1 3.7687e-10 

(1.8843e-09) 3.7687e-10 
(1.8843e-09) 3.6797e-06 

(1.8398e-05) 75699 
C 3 11.5–13.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 22809 
C 4 14.6–17.4 1 0.0004 (0.0020) 0.0004 (0.0020) 0.0796 (0.3396) 41 186 
C 5 18.5–23.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 63 372 
Sidak adjusted p-values calculated as in ( 18 ) with R = 9 are 
reported in parenthesis. Recall that our estimator and test statistics are 
constructed by sorting the estimated coefficients ̂ θ( j ) in ( 4 ). Hence, 
choosing m to be the point of truncation implies that inference and 
estimation are performed considering only the m largest estimated 
coefficients. 

F or re gions W 1 and W 2 , the Bonferroni, and K adjusted p- 
values are smaller than the global significance level α = 0.05 
even after implementing Sidak’s correction. Whereas, the p-values 
adjusted for post-selection by means of the naive method, only detect 
significant deviations o v er re gion W 2 . As discussed in detail in 
Section 4.3 , this result is not surprising since the naive approach 
is the most conserv ati ve among the three methods considered. 
The adjusted p-values for the remaining regions are all equal to 
one. This implies that our smooth tests analysis allows us to 
claim that deviations from the background occur only on regions 
W 1 and W 2 . 

The results obtained on the region W 1 are consistent with those of 
Luna & Sokoloski ( 2007 ). These are known features, arising in inner 
accretion disc perhaps, and their detection here is a confirmation that 
the method is working. 

To gain a better understanding of the nature of the deviation from 
the background model detected on region W 2 , we rely on the so- 
called Comparison Density plot or CD-plot (e.g. Algeri & Zhang 
2021 ) shown in Fig. 3 . The CD-plot allows us to visualize where 
the data distribution deviates significantly from the hypothesized 
distribution (in our case, the re-calibrated background density). It 
displays the estimated comparison density (dark green solid line) 

and which, for region W 2 specifies as 
̂ d (u ; ̂ B W 2 , F 2 ) = 0 . 9500 + 2 . 1577 u − 5 . 2749 u 2 + 2 . 9179 u 3 , (19) 

where u = ̂ B W 2 ( x). Whereas, the green bands are the standard errors 
of ̂ d ( ̂ B W 2 ( x); ̂ B W 2 , F 2 ) obtained by simulating from the estimator 
in ( 19 ) as described in Algeri & Zhang ( 2021 ). The grey bands 
correspond to the 99 % confidence bands under the null hypothesis 
of background only. If the estimated comparison density is within 
the confidence bands, o v er the entire range considered, we conclude 
that there is no significant departure from the background model. 
Conv ersely, we e xpect significant deviations to occur in regions 
where the estimate lies outside the confidence bands. It is worth 
emphasising that the CD-plot provides us a representation of the 
data in the quantile domain; that is, it displays the transformed data 
u i = ̂ B W 2 ( x i ), i = 1, . . . , 3311, and their estimated density. Such 
representation ensures that the most substantial departures of the 
data distribution from the expected model are magnified and those 
due to random fluctuations are smoothed out. More details on the 
construction and discussion of the CD-plot can be found in Algeri & 
Zhang ( 2021 , Algorithm 1) and Algeri ( 2020 , Section V A). 

For the specific case of Region W 2 , the CD-plot in Fig. 3 suggests 
that significant departures from ̂ b W 2 occur within the range of x ∈ 
[6.1, 7.9] Å. This detection, ho we ver, cannot be attributed to any 
known spectral features, and it corresponds to the signature of the 
Chandra optics Iridium absorption edge and is detectable because we 
are not assuming a particular spectral model here. It is worth pointing 
out that the departure below one at x ! 9.1 Å is due to the fact that, 

Table 5. Summary of our signal detection results for each region of interest using smooth tests. The second column 
shows the number, m , of coefficients selected out of M = 10, for each of the nine regions considered. The p-values 
adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing 
via Sidak (see 18 ) are given in the third, fourth and fifth columns, respectively. 
Regions m Bonferroni K Naive 
of interest ( W r ) (Sidak) (Sidak) (Sidak) 
W 1 3 0.0001 (0.0011) 0.0071 (0.0397) 0.0045 (0.0621) 
W 2 3 1.0816e-18 

(1.0817e-17) 2.7907e-15 
(2.9976e-14) 3.3306e-15 

(2.4980e-14) 
W 3 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 4 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 5 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 6 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 7 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 8 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 9 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
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Table 6. Local p-values and adequate multiple hypothesis testing adjust- 
ments when testing for spectral lines via LRTs. 
Regions Local Sidak’s 
of interest ( W r ) p-values correction 
W 3 0.4810 0.9899 
W 4 0.1143 0.5724 
W 5 0.3247 0.9359 
W 6 0.0385 0.2402 
W 7 0.2612 0.8799 
W 8 0.5000 0.9922 
W 9 0.5000 0.9922 
Table 7. 50% and 90% upper limits on different regions using the LRT, 
with and without Sidak’s correction. The 50% upper limits are calculated by 
the proportion of the expected lines η to achieve the power 0.5 (solid line in 
Fig. 4 ) times the sample sizes n r . Similarly, the 90% upper limits are calculated 
by the proportion of the expected lines η to achieve the power 0.9 times the 
sample sizes n r . 
Regions ( W r ) 50% upper limits via LRT 90% upper limits via LRT 

Local Sidak adjusted Local Sidak adjusted 
W 3 29.93 39.42 48.91 53.29 
W 4 20.00 26.43 32.36 39.52 
W 5 24.02 30.14 35.32 43.80 
W 6 22.62 28.08 34.71 39.39 
W 7 17.90 24.17 29.71 35.98 
W 8 17.84 24.80 30.30 36.25 
W 9 37.83 21.87 63.57 76.83 

The probabilities of type I error for each of the procedures 
considered (obtained by setting ηr = 0) are reported in Tables D1 –
D2 . The simulated type I error using Bonferroni adjustment for 
the deviance statistic often exceeds the significance level of 0.05 
in the context of local analysis. It also exceeds the significance level 
αr = 0.0073 in the global analysis; that is when setting the probability 
of false disco v ery across all the sev en re gions to be α = 0.05. 
Conversely, the K -statistic and the naive post-selection adjustment 
for the deviance perform well in controlling the specified significance 
le vel e ven though the naive adjustment appears to be excessively 
conserv ati ve (the respecti ve probability of type I error is al w ays zero 
in the global analysis). This is reflected also in the power curves 
reported in Fig. 4 . The naive approach is the most conservative 
among the three, whereas Bonferroni exhibits the highest power. 

Finally, upper limits are constructed by inverting the power curves 
of the LRT at 50% and 90 % and multiplying the resulting ηr value 
for the sample size, n r (see Table 1 ) of the disco v ery re gion W r , 
for r = 3, . . . , 9. The results are summarized in T able 7 . W e can 
interpret the Sidak adjusted upper limits as the number of samples 
from the expected signal needed to achieve the specified power when 
testing simultaneously regions W 3 –W 9 . For example, for region W 3 , 
our 50 % upper limit computed using the LRT after Sidak correction 
is 40 (39.42). This tells us that if a spectral line at position 12.131 Å
was present, we would need 40 events in this location (out of the 730 
observed in the entire W 3 region) to be able to detect such spectral line 
with power 50%, while simultaneously looking for spectral lines in 
the regions W 4 , . . . , W 9 . Whereas, if we were interested in designing 
a future observation targeting solely region W 3 , our 50 % upper limit 
computed using the (local) LRT is 30 (29.93). This tells us that if 
a spectral line at position 12.131 Å was present, we would need 30 
events at such location to detect it with power 50%, and assuming 
that no other test on other regions is conducted at the same time. 

Similar interpretations can be given to the 90 % upper limits and for 
other regions. 

For the sake of comparison, the upper limits obtained by means of 
smooth tests are reported in Tables D3 –D4 . Not surprisingly, since 
smooth tests do not rely on the specification of a model for the signal, 
they are more conserv ati ve than the LRT. For example, for region W 3 , 
the 50 % upper limits computed using the Bonferroni, K -statistic, and 
the naive methods, and adjusted via Sidak for multiple hypothesis 
testing lead to 53, 64, and 68 events, respectively. 
5  DISCUSSION  
5.1 Advantages and limitations 
We hav e dev eloped a no v el method to detect weak signals 
distinct from a smooth background in high-resolution photon 
counting spectra. This approach anticipates difficulties likely to be 
encountered in the coming era of calorimeter spectra. The method 
is implemented to work with unbinned photon lists that allows the 
full available spectral resolution to be used, though a modification 
to use binned spectra is viable from an algorithmic perspective and 
it is the subject of future work. 

The statistical methodology presented here is particularly advanta- 
geous at high resolution because a precise specification of the source 
model spectrum is often not possible as the information available 
in the data usually exceeds that in the models proposed. Here we 
show that one can indeed exploit this phenomenon by modelling and 
estimating the ‘gap’ between the (potentially misspecified) model 
available and the true spectrum using smooth functions like shifted 
Legendre polynomials. On this note, it is worth emphasizing that, 
as pro v en in Algeri ( 2020 ), the closer the postulated model is to the 
truth, the more accurate (less biased) is the estimate of the latter. It 
follows that, in principle, one could a v oid specifying a model for 
the spectrum and estimate it by means of smooth functions. None 
the less, if a model is av ailable (e ven if misspecified), it should be 
used in order to reduce the gap between the proposed model and the 
truth. 

The implementation currently ignores spectral calibration prod- 
ucts like the ef fecti ve area and the redistribution matrices, and 
therefore cannot be applied to CCD resolution spectra. Furthermore, 
the method relies on a comparison between the smooth model de- 
scription of the source-free background and the source + background 
data sets, so it cannot be applied to cases where the background is 
contaminated by the source or where the background is not smoothly 
varying. 
5.2 Inferences based on RT Cru analysis 
5.2.1 Domain of applicability 
We first note that our method easily detects the presence of significant 
source emission in passband W 1 . This is not surprising, as these lines 
have been identified and analysed by several studies (e.g. Luna & 
Sokoloski ( 2007 ) resolved it clearly in HETGS + ACIS-S spectra; 
and Danehkar et al. ( 2021 ) successfully modelled the triplet in the 
same data set that we use). The chance that a random fluctuation can 
produce a detectable departure from the background is assessed as p 
! 10 −2 after accounting for multiple hypothesis tests (see Table 5 ). 
This serves as a validation of the method, in that a line complex 
known to exist is correctly found. 

An important characteristic of our method is that it is not limited to 
narrow lines. If the source spectrum has a different shape compared 
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Table 6. Local p-values and adequate multiple hypothesis testing adjust- 
ments when testing for spectral lines via LRTs. 
Regions Local Sidak’s 
of interest ( W r ) p-values correction 
W 3 0.4810 0.9899 
W 4 0.1143 0.5724 
W 5 0.3247 0.9359 
W 6 0.0385 0.2402 
W 7 0.2612 0.8799 
W 8 0.5000 0.9922 
W 9 0.5000 0.9922 
Table 7. 50% and 90% upper limits on different regions using the LRT, 
with and without Sidak’s correction. The 50% upper limits are calculated by 
the proportion of the expected lines η to achieve the power 0.5 (solid line in 
Fig. 4 ) times the sample sizes n r . Similarly, the 90% upper limits are calculated 
by the proportion of the expected lines η to achieve the power 0.9 times the 
sample sizes n r . 
Regions ( W r ) 50% upper limits via LRT 90% upper limits via LRT 

Local Sidak adjusted Local Sidak adjusted 
W 3 29.93 39.42 48.91 53.29 
W 4 20.00 26.43 32.36 39.52 
W 5 24.02 30.14 35.32 43.80 
W 6 22.62 28.08 34.71 39.39 
W 7 17.90 24.17 29.71 35.98 
W 8 17.84 24.80 30.30 36.25 
W 9 37.83 21.87 63.57 76.83 

The probabilities of type I error for each of the procedures 
considered (obtained by setting ηr = 0) are reported in Tables D1 –
D2 . The simulated type I error using Bonferroni adjustment for 
the deviance statistic often exceeds the significance level of 0.05 
in the context of local analysis. It also exceeds the significance level 
αr = 0.0073 in the global analysis; that is when setting the probability 
of false disco v ery across all the sev en re gions to be α = 0.05. 
Conversely, the K -statistic and the naive post-selection adjustment 
for the deviance perform well in controlling the specified significance 
le vel e ven though the naive adjustment appears to be excessively 
conserv ati ve (the respecti ve probability of type I error is al w ays zero 
in the global analysis). This is reflected also in the power curves 
reported in Fig. 4 . The naive approach is the most conservative 
among the three, whereas Bonferroni exhibits the highest power. 

Finally, upper limits are constructed by inverting the power curves 
of the LRT at 50% and 90 % and multiplying the resulting ηr value 
for the sample size, n r (see Table 1 ) of the disco v ery re gion W r , 
for r = 3, . . . , 9. The results are summarized in T able 7 . W e can 
interpret the Sidak adjusted upper limits as the number of samples 
from the expected signal needed to achieve the specified power when 
testing simultaneously regions W 3 –W 9 . For example, for region W 3 , 
our 50 % upper limit computed using the LRT after Sidak correction 
is 40 (39.42). This tells us that if a spectral line at position 12.131 Å
was present, we would need 40 events in this location (out of the 730 
observed in the entire W 3 region) to be able to detect such spectral line 
with power 50%, while simultaneously looking for spectral lines in 
the regions W 4 , . . . , W 9 . Whereas, if we were interested in designing 
a future observation targeting solely region W 3 , our 50 % upper limit 
computed using the (local) LRT is 30 (29.93). This tells us that if 
a spectral line at position 12.131 Å was present, we would need 30 
events at such location to detect it with power 50%, and assuming 
that no other test on other regions is conducted at the same time. 

Similar interpretations can be given to the 90 % upper limits and for 
other regions. 

For the sake of comparison, the upper limits obtained by means of 
smooth tests are reported in Tables D3 –D4 . Not surprisingly, since 
smooth tests do not rely on the specification of a model for the signal, 
they are more conserv ati ve than the LRT. For example, for region W 3 , 
the 50 % upper limits computed using the Bonferroni, K -statistic, and 
the naive methods, and adjusted via Sidak for multiple hypothesis 
testing lead to 53, 64, and 68 events, respectively. 
5  DISCU SSION  
5.1 Advantages and limitations 
We hav e dev eloped a no v el method to detect weak signals 
distinct from a smooth background in high-resolution photon 
counting spectra. This approach anticipates difficulties likely to be 
encountered in the coming era of calorimeter spectra. The method 
is implemented to work with unbinned photon lists that allows the 
full available spectral resolution to be used, though a modification 
to use binned spectra is viable from an algorithmic perspective and 
it is the subject of future work. 

The statistical methodology presented here is particularly advanta- 
geous at high resolution because a precise specification of the source 
model spectrum is often not possible as the information available 
in the data usually exceeds that in the models proposed. Here we 
show that one can indeed exploit this phenomenon by modelling and 
estimating the ‘gap’ between the (potentially misspecified) model 
available and the true spectrum using smooth functions like shifted 
Legendre polynomials. On this note, it is worth emphasizing that, 
as pro v en in Algeri ( 2020 ), the closer the postulated model is to the 
truth, the more accurate (less biased) is the estimate of the latter. It 
follows that, in principle, one could a v oid specifying a model for 
the spectrum and estimate it by means of smooth functions. None 
the less, if a model is av ailable (e ven if misspecified), it should be 
used in order to reduce the gap between the proposed model and the 
truth. 

The implementation currently ignores spectral calibration prod- 
ucts like the ef fecti ve area and the redistribution matrices, and 
therefore cannot be applied to CCD resolution spectra. Furthermore, 
the method relies on a comparison between the smooth model de- 
scription of the source-free background and the source + background 
data sets, so it cannot be applied to cases where the background is 
contaminated by the source or where the background is not smoothly 
varying. 
5.2 Inferences based on RT Cru analysis 
5.2.1 Domain of applicability 
We first note that our method easily detects the presence of significant 
source emission in passband W 1 . This is not surprising, as these lines 
have been identified and analysed by several studies (e.g. Luna & 
Sokoloski ( 2007 ) resolved it clearly in HETGS + ACIS-S spectra; 
and Danehkar et al. ( 2021 ) successfully modelled the triplet in the 
same data set that we use). The chance that a random fluctuation can 
produce a detectable departure from the background is assessed as p 
! 10 −2 after accounting for multiple hypothesis tests (see Table 5 ). 
This serves as a validation of the method, in that a line complex 
known to exist is correctly found. 

An important characteristic of our method is that it is not limited to 
narrow lines. If the source spectrum has a different shape compared 
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HRC degap: work in progress



HRC degap: the plan

❖ Cross validate degap solutions

❖ Test for spatial variability (degap is assumed fixed along perpendicular 
direction)

❖ Test for temporal variability (suspected, but innocent until proven guilty)



Takeaways
❖ CalStats WG

❖ New method to look for departures from expected spectral model based on smooth test for number of shifted 
Legendre polynomials

❖ https://github.com/xiangyu2022/LPBkg


❖ https://github.com/xiangyu2022/Symbiotic-Star-RT-Cru-Analysis


❖ Hi-Res WG
❖ Crucial to know where the lines are expected to be

❖ Background WG
❖ Tool to verify background models

https://github.com/xiangyu2022/LPBkg
https://github.com/xiangyu2022/Symbiotic-Star-RT-Cru-Analysis

