

eROSITA Background

Filter-Wheel-Closed Observations

25.04.2023 IACHEC meeting Pelham, Bad Endorf

Michael Yeung

Filter Wheel Closed (FWC) Observations

- Four positions in eROSITA's filter wheels (one per telescope module (TM)) •
 - CLOSED (instrumental background)
 - CALIB (radioactive 55 Fe source with Al/Ti target for calibration)
 - FILTER (observation)
 - OPEN (for outgassing)
- FWC observations
 - Measure & monitor the in-orbit background of eROSITA
 - Useful for analysis of extended sources/diffuse emissions
 - when instrumental background contributes significantly to the source counts

Courtesy of S. Friedrich

Filter Wheel Closed Observations

- 19 Dec 2021 S S TM2TM3 TM4TM5TM6TM75000
- Long exposures from orbit corrections
 - eRASS1: ~20 half-hour exposures
 - eRASS2: ~10 half-hour exposures
 - Afterwards: TM4 ~50 half-hour exposures; TM2: 8 hours

TM	Live time (ks)
1	268.3
2	246.5
3	216.7
4	294.2
5	487.1
6	246.1
7	811.8

Enhancement Following Filter Wheel Rotation

- Decay to constant level after ~10 min
- Different intensity depending on TM
- Affect both Closed and astrophysical observations
 - But more so for Closed
- TM4 least affected
 - TM4 FWC observations continued after July 2020
- Will be documented in Freyberg+23 (in prep.)

eROSITA filter wheel closed exposures

4

Possible Source of Enhancement

- Most likely the contact between the Stepper motor and the inner ring of the filter disc
 - Discovered in ground calibration in 2015
 - Motor originally made of Al, ring Vespel
 - No longer detected on ground after interchanging the materials
- Probably generate X-ray via triboelectric effect

Figure 1 Filter wheel with Hall sensors, small wheel (Vespel), magnets for position coding (left) and filter disk (right).

- Light curves in 60 s bins
 - remove time periods with no events a.
 - correct for chopper settings b.
- 2. Remove time intervals with $90 \text{ cts/min} \leq \text{count rate} \leq 170 \text{ cts/min}$
- Identify and remove $\sim 10 \min \text{ after FW}$ 3. rotations using house-keeping record
- Remove remaining enhancement instances manually
- Apply standard eROSITA EventList flagging , bad pixels, invalid patterns) (Out of FOV

- eRASS1:
 - Non-light-leak TMs:
 - 3-4% (0.2-9 keV) in general for TM1-3 and 6
 - For TM4, only 1%
 - Light-leak cameras:
 - without 200nm Al on-chip filter
 - enhancement from light leak partially removed from light curve
 - 13% for TM5
 - 5% for TM7

Cleaned FWC Spectra

- Small difference between TMs
 - TM2 slightly lower
 - TM5, 7 (without on-chip filter) higher
- High-energy cut-off is different in every TM in energy space (gain of each TM is different)
 - Cut-off depends on minimum ionising particles (MIPs) threshold (12288 adu; 13568 adu after 16 Feb 21)

Cleaned FWC Spectra

- Empirical spectral model for all TMs
- Models can be scaled to observations with the header "BACKSCAL" keyword
 - BACKSCAL of FWC model = 0.8235 deg^2 (FOV of each TM)

Figure 4. Average eROSITA spectrum in CLOSED filter position.

Freyberg+20

Time Variability

- Low-energy background increases with time below $\sim 0.3 \,\mathrm{keV}$
 - electronic noise
- Particle background decreases due to solar activity

Time Variability

- Low-energy background (electronic noise) increases with time below $\sim 0.3 \,\text{keV}$
- Particle background decreases due to solar activity

11

Recent Measurements

- eROSITA in stand-by mode between Dec 2022- Mar 2023
 - 5 min FWC data ~ daily
 - All TMs simultaneously
 - Filter wheel stayed in CLOSED position -> no enhancement

- (vice versa)

Effect of Software Changes

14

- Big jump between 946 and 947 due to software change
 - enhanced probability of asymmetric double events
- Small (but not negligible) difference between 947 and 020 for TM4 (micrometeoroid hit after eRASS1)

Summary

- $\sim 70 \,\mathrm{h}\,\mathrm{of}\,\mathrm{FWC}\,\mathrm{observations}\,\mathrm{per}\,\mathrm{TM}$
 - Most FWC observations were made in the first 1.5 yr after the launch
- Enhancement observed following filter wheel rotations
 - **Removed** in EDR and DR1 (later this year)
- Particle background correlates well with solar activity
- Time and CCD temperature dependence at $\leq 0.3 \text{ keV}$
- Software updates suppressed the electronic noise at low energies
- FWC data seem to **agree well** with the **simulation** after cleaning

