

2023 April 23-27, 15th IACHEC meeting @ Pelham, Germany

# XRISM Timing System Design and Timing Accuracy

Yukikatsu Terada (Saitama Univ, JAXA),

Megumi Shidatsu (Ehime Univ.), Hiromitsu Takahashi (Hiroshima Univ.), Ryo Iizuka, Katsuhiro Hayashi, Shin Watanabe, Chikara Natsukari, Makoto S. Tashiro, Kenichi Toda (JAXA), Takashi Kominato (NEC), So Kato, Ryohei Sato, Minami Sakama, Takumi Shioiri (Saitama Univ.), and the XRISM Mission Operation Preparation Team

# **Timing System for XRISM**

Development of the XRISM Timing system with the V-shape model





## XRISM Scientific objectives

- 1. Revealing the structure formation of the Universe and evolution of clusters of galaxies
- 2. Understanding the circulation history of baryonic matters in the Universe
- 3. Investigating the transport and circulation of energy in the Universe
- 4. Realizing the new science with high-resolution X-ray spectroscopy

• No major requirement on timing accuracy

Requirement for X-ray observatory (#4)

## Science Requirement for Timing

Absolute timing accuracy ≤ 1 msec (in 1 sigma) (\*) Relaxed from Hitomi, <350 usec



## 2. Design and Budget

X-Ray Imaging and Spectroscopy Mission

## Bus system design

1. Same bus system as Hitomi spacecraft

 $\rightarrow$  well verified

2. Carries GPS receiver (GPSR)

→ good timing accuracy (in nsec)

3. SpaceWire network for telemetry/command communication

 $\rightarrow$  used for timing synchronization



Fig. 1 A schematic diagram of the logical topology of the Hitomi network.<sup>9</sup> Boxes represent components onboard the spacecraft and ellipses are GPS satellites or the ground station. Communication lines (in blue) are realized by SpaceWire.

Terada et al. JATIS 2017

## Timing system = Spacecraft + Ground system



Rism X-Ray Imaging and Spectroscopy Mission

## **Timing chart and Timing Error items**

Terada et al. JATIS 2017





ID

Α

В

C

D

Е

G

## **Timing Error budget for Hitomi to XRISM**

#### Hitomi **XRISM** BUS Resolve Error budget (µs) Component Error items GPSR Jitter between TAI and GPSR timing signal <0.02 (GPS-ON) < 0.2 us < 0.5 us <0.5 (GPS-ON) SMU Jitter between GPSR timing and TIME\_CODE < 350 us <270 (GPS-OFF) < 2.0 us SpaceWire network <2.0 Jitter between TIME CODE at SMU and User node SpaceWire user node Jitter between TIME\_CODE and reconstructed TI <1.0 Software ahtime Uncertainty in reconstruction of TI <1.0 <0.5ms **Resolution of LOCAL TIME** SpaceWire user node <25.6 Ground system Accuracy of orbital elements <3.0 (= 1 km) < 3.0 us

Table 2 Error budget in time assignments.

#### Terada et al. JATIS 2017

Tot. <0.5 ms

## % From Hitomi to XRISM

- 1. Timing requirement has been relaxed from Hitomi (350 us  $\rightarrow$  1 ms)
- 2. Division of the responsibility for on-board components changed.



## **3. Fabrication**







**©JAXA** 

We have a spacecraft and ground system for XRISM

15th IACHEC meeting @Pelham



## <u>Verification by Timing Error items (A – G)</u>

| ID           | Item                              | Verification/Analsys        |  |  |  |  |
|--------------|-----------------------------------|-----------------------------|--|--|--|--|
| GPSR alive   |                                   |                             |  |  |  |  |
| А            | Jitter bw TAI – GPSR              | spec sheet (0.1us) / ok     |  |  |  |  |
| В            | Jitter bw GPSR – SMU              | Hitomi measurement          |  |  |  |  |
| GPSR failure |                                   |                             |  |  |  |  |
| AB'          | Uncertainties in GPS unsync. mode | Suzaku / New                |  |  |  |  |
| Common       |                                   |                             |  |  |  |  |
| С            | Jitter bw SMU Resolve             | Hitomi measurement          |  |  |  |  |
| D            |                                   | spec sheet (1 us) / ok      |  |  |  |  |
| E            | Uncertainties in Resolve          |                             |  |  |  |  |
| F            |                                   |                             |  |  |  |  |
| G            | Determination of Orbital element  | Hitomi in-orbit (<1ns) / ok |  |  |  |  |



### <u>Hitomi measurement</u> Item = B (GPSR -- SMU)

### 12th IACHEC meeting





## $0.143 \ \mu sec < 0.5 \ \mu sec // OK$



 $0.3 \sim 0.8 \ \mu sec < 1.0 \ \mu sec // OK$ 



## **New measurement for XRISM**

Item = AB' (GPSR failure mode)

## see the next talk by Shidatsu et al !



## Confirmation of the timing performance of the Timing System

- When: During the commissioning phase (3 months after launch)
- Purpose: Check the pulse profile of one NS pulsar, listed below.
- Simultaneous observation <u>NOT</u> required.

| Object Name    | RA (J2000) | Dec (J2000) | P (ms) | Hp rate(c/s)<br>(no/with GV) |
|----------------|------------|-------------|--------|------------------------------|
| Crab           | 83.633080  | 22.014500   | 33.7   | 30/42                        |
| PSR B1821-24   | 276.133371 | -24.869750  | 3.05   | 0.020/0.006                  |
| PSR J1937+21   | 294.915100 | 21.622700   | 1.56   | 0.011/0.004                  |
| PSR J0218+4232 | 34.526502  | 42.538157   | 2.32   | 0.023/0.006                  |







Please support us again!

Hitomi, Swift, Integral, NICT, lidate (radio) in 2016 am