

Calibration of the Imaging X-ray Polarimetry Explorer (IXPE)

Wayne Baumgartner IXPE Calibration Scientist NASA/MSFC

Fabio Muleri IXPE Instrument Calibration Lead INAF-IAPS

Brain Ramsey, Jeff Kolodziejczak, Nicholas Thomas, Martin Weisskopf, Steve Bongiorno, Allyn Tennant, Steve O'Dell NASA/MSFC

Sergio Fabiani, Luca Baldini, Simone Castellano, Enrico Costa, Alessandro Di Marco, Fabio La Monaca, Simone Maldera, Alberto Manfreda, Fabio Muleri, John Rankin, Paolo Soffitta, Carmelo Sgrò, Fei Xie Italian Instrument Team (I2T): IAPS/INFN

23 April 2023

The IXPE Team

Science Advisory Team

SAT currently comprises > 90 scientists from 12 countries

*

-

The Mirror Module Assemblies (MMAs)

Parameter	Value
Number of mirror modules	3
Number of shells per mirror module	24
MMA Mass	93 kg (three together)
Focal length	4 m
Total shell length	600 mm
Range of shell diameters	162–272 mm
Range of shell thicknesses	0.16–0.25 mm
Shell material	Electroformed nickel–cobalt alloy
Effective area per mirror module	163 cm² (@ 2.3 keV); >192 cm² (3–6 keV)
Angular resolution (HPD)	~25 arcsec (MMA alone)
Field of view (detector limited)	12.9 arcmin square

MMA ANGULAR RESOLUTION

MMA1 PSF: HPD = 19.0"

Composite Image of: 4 MMA PSFs at 3 energies

MMA 1(Left), 2(Left-Center), 3(Right-Center), 4(Right); 2.3 keV(Top), 4.5 keV(Center), 6.4 keV(Bottom)

IXPE MMA Angular Resolutions: HPD [arcsec]

	MMA1	MMA2	MMA3	MMA4
2.3 keV	19.0	25.0	27.6	20.0
4.5 keV	19.9	26.0	28.0	20.8

MMA OFF-AXIS ANGULAR RESOLUTION

Composite image of MMA1 PSF at several off-axis angles

 PSF of flight spare MMA4 (HPD =20") measured with facility CCD camera and flight spare DU-FM1

On-axis PSF:

Essentially convolves MMA
PSF with DU spatial resolution

Energy [keV]	PSF on DU [HPD, um]	MMA4 + DU- FM1 HPD [arcsec]
2.3	474.6	22.1
4.5	513.2	23.8
6.4	528.0	24.1

Composite image of on- and off-axis telescope PSF measurements across detector plane

TELESCOPE ANGULAR RESOLUTION HALF POWER DIAMETER

GPD angular resolution

- intrinsic spatial resolution (pixels, blurring due to diffusion, algorithm)
- inclined penetration
- MMA PSF (only MMA)

HPD On Axis

 Refined analysis within 8mm of diameter and PSF fit

X-ray Tube (Line)	MMA HPD (arcsec)	Detector Spatial Resolution (arcsec)	Detector Defocusing Effects (arcsec)	Derived Telescope HPD (arcsec)	Measured Telescope HPD (arcsec)
2.3 keV	20.0	5.6	6.0	21.6	22.2
4.5 keV	20.8	6.3	7.0	22.8	23.8
5.9 keV	20.1	7.4	7.2	22.6	24.1

MMA4 EFFECTIVE AREA DERIVED FROM TELESCOPE MEASUREMENT

Derivation of MMA Effective Area in Telescope configuration (using Detector QE) matches direct measurement of MMA with facility detectors

Source	Mean Energy K _α + K _β (keV) [or L-lines for Mo]	Measured MMA Effective Area (cm ²)	DU quantum efficiency	Derived Telescope Effective Area (cm²)	Measured Telescope Effective Area (cm ²)
Мо	2.30	167.7	0.155	26.02	25.38
Ti	4.63	196.3	0.038	7.56	7.37
Fe	6.58	176.3	0.015	2.68	2.67

 Dithering adopted for flight to average over low level detector systematic effects

And used to reduce calibration time

- Fewer measurements needed
- Two dither radii measured to match anticipated flight pattern and
- Deep field (and wider) detector calibration taken in Italy

Dither pattern in progress on DU

Measured in 100m beamline with polarized source

SUMMARY OF TELESCOPE MODULATION FACTORS

	DU-FM1 alone modulation factor	Telescope (MMA4 + DU-FM1) Modulation Factor (r = 1.86mm)	Telescope (MMA4 + DU-FM1) Modulation Factor (r = 3.72mm)
2.7 keV	(29.87 +/- 0.12) %	(29.69+/- 0.20) %	(29.77 +/- 0.13) %
4.5 keV	(46.04 +/- 0.14) %	(45.43 +/- 0.33) %	(46.18 +/- 0.21) %
6.4 keV	(56.59 +/- 0.09) %	(57.08 +/- 0.42) %	(56.26 +/- 0.23) %

- Modulation factors with and w/o optics agree
- Presence of MMA optics does <u>not</u> affect Polarization performance of detector

- Proposal submitted recently to NASA
- Evaluated over the next several months
- If accepted, AO will be out late summer autumn 2023
- Observations to start Jan 2024 (after completion of nominal 2-year baseline mission)

<u>So far:</u>

- 74 observations of 46 distinct sources
- > 27 detections of polarization

Imaging X-ray Polarimetry Explorer – IXPE

Mission Status – Detectors

John Rankin

Italian National Institute for Astrophysics — INAF/IAPS

on behalf of the IXPE team

15th IACHEC meeting, 23-27 April 2023 - Seeblick Pelham

The Detectors On-Board IXPE

The detectors on-board IXPE expands on other missions by detecting two additional observables:

- Polarization degree
- Polarization angle

Polarimetry gives info on

- Geometry (even of sources too small to be resolved with current X-ray telescopes)
- Emission mechanisms

Costa+ 2001

Incident X-ray

 V_{drift}

DME Fill Gas

ADC

Using the Gas Pixel Detectors, based on the photoelectric effect

 The distribution in angle of ejected photoelectrons is peaked around the polarization's direction

Photoelectron Track

Window

Initial

Absorption

GEM

How IXPE Measures Polarization

Using the Gas Pixel Detectors, based on the photoelectric effect

- The incident X-ray extracts a photoelectron that produces a ionization track in the gas
- The track is amplified and read

• A histogram of the directions of all tracks is produced

How IXPE Measures Polarization

Using the Gas Pixel Detectors, based on the photoelectric effect

- For each X-ray it detects
 - Photoelectric track direction
 - Energy
 - Position
 - Time of arrival

Calibrations of IXPE

 Crab Nebula: only source with previous X-ray polarization measurements

Variable over time: cannot be used

 Calibration using ground calibration sources

 In-flight monitoring using on-board calibration sources

Image credit: NASA

4 Calibration sources

- 3 unpolarized and 1 polarized
- Based on ⁵⁵Fe radioactive nuclides

Filter and calibration wheel housing the sources

Producing Polarized Radiation

Bragg diffraction close to 45° on a graphite crystal

Two lines are scattered:

- ⁵⁵Fe radioactive source at 5.89 keV
- Photons from the ⁵⁵Fe source absorbed by silver foil and reemitted at 2.9 keV

CalA source

Producing Unpolarized Radiation

⁵⁵Fe radioactive source at 5.89 keV

Radiation from ⁵⁵Fe source reemitted by a silicon crystal as a 1.7 keV fluorescence line

Energy Calibration

In-flight energy calibration

- As is common for gas detectors, energy varies due to temperature, charging effects, ...
- Calibration sources at two energies (CalC and CalD) can be used to perform a linear energy calibration
 - 10x10 calibration maps interpolated over time
 - Calibration sources observed alternatively once per day, during occultations

Example CalC calibration map

In-flight energy calibration

After calibration the energy reconstruction is correct to ~1%

- Good value compared to the energy resolution of ~20%
- Working on cross-normalization with other observatories using simultaneous observations

Efficacy of energy calibration over time, with CalA onboard calibration source

(one of the sources not used for energy calibration)

Not used as a standard candle but to check mutual calibration of the detectors

A simple model: Tbabs × powerlaw × pollin

- Different residuals for different telescopes
- Polarimetric response good!

Parame	eters (defined:					
Model	consta	ant<1>*TBab	s<2>*power	law<3>*poll	lin<4> Source	No.:	1 Active/On
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data g	group: 1			
1	1	constant	factor		1.00000	froze	en
2	2	TBabs	nH	10^22	0.487281	+/-	9.63210E-03
3	3	powerlaw	PhoIndex		2.25200	+/-	2.83502E-03
4	3	powerlaw	norm		10.3009	+/-	4.47073E-02
5	4	pollin	A1		0.178552	+/-	3.11115E-03
6	4	pollin	Aslope		6.34104E-03	+/-	1.16486E-03
7	4	pollin	psi1	deg	-28.6451	+/-	0.454061
8	4	pollin	psislope	-	-2.14514	+/-	0.164114
			Data	group: 2			
9	1	constant	factor		0.947187	+/-	5.59843E-04
10	2	TBabs	nH	10^22	0.487281	= p2	
11	3	powerlaw	PhoIndex		2.25200	= p3	
12	3	powerlaw	norm		10.3669	= p4	
13	4	pollin	A1		0.178552	= p5	
14	4	pollin	Aslope		6.34104E-03	= p6	
15	4	pollin	psi1	deg	-28.6451	= p7	
16	4	pollin	psislope	5	-2.14514	= p8	
			Data (group: 3			
17	1	constant	factor		0.912789	+/-	5.39999E-04
18	2	TBabs	nH	10^22	0.487281	= p2	
19	3	powerlaw	PhoIndex		2.25200	= p3	
20	3	powerlaw	norm		10.3669	= p4	
21	4	pollin	A1		0.178552	= p5	
22	4	pollin	Aslope		6.34104E-03	= p6	
23	4	pollin	psi1	deg	-28.6451	= p7	
24	4	pollin	psislope	5	-2.14514	= p8	
		-					

Acceptable fit if using bknpower instead of powerlaw

- Spectral break at 5-6 keV
- Cross-normalization among the three telescopes:
 - det1: 1.0, det2: 0.95, det3: 0.91
- Gain adjustment:
 - det1: 0, det2: 0.5%, det3: <2%

Model	const	ant<1>*TBab	s<2>*bknpow	er<3>*po]	llin<4> Source	No.: 1	Active/0
Model	Model	Component	Parameter	Unit '	Value		
par	comp						
			Data g	roup: 1			
1	1	constant	factor		1.00000	frozer	1
2	2	TBabs	nH	10^22	0.302047	+/- 1	L.82508E-02
3	3	bknpower	PhoIndx1		2.20502	+/- 5	5.64022E-03
4	3	bknpower	BreakE	keV	5.96234	+/- 4	4.65551E-02
5	3	bknpower	PhoIndx2		3.17511	+/- 5	5.55432E-02
6	3	bknpower	norm		9.62439	+/- 8	3.10594E-02
7	4	pollin	A1		0.174061	+/- 3	3.20304E-03
8	4	pollin	Aslope		8.42536E-03	+/- 1	L.20647E-03
9	4	pollin	psi1	deg	-28.5726	+/- 0	0.461672
10	4	pollin	psislope	5	-2.17965	+/- 0	0.167514
			. Data q	roup: 2			
11	1	constant	factor	•	0.950960	+/- 3	3.02378E-03
12	2	TBabs	nH	10^22	0.302047	= p2	
13	3	bknpower	PhoIndx1		2.20502	= p3	
14	3	bknpower	BreakE	keV	5.96234	= p4	
15	3	bknpower	PhoIndx2		3.17511	= p5	
16	3	bknpower	norm		9.62439	= p6	
17	4	pollin	A1		0.174061	= p7	
18	4	pollin	Aslope		8.42536E-03	= p8	
19	4	pollin	psi1	deg	-28.5726	= p9	
20	4	pollin	psislope	5	-2.17965	= p10	
			Data g	roup: 3			
21	1	constant	factor	•	0.913724	+/- 2	2.64159E-03
22	2	TBabs	nH	10^22	0.302047	= p2	
23	3	bknpower	PhoIndx1		2.20502	= p3	
24	3	bknpower	BreakE	keV	5.96234	= p4	
25	3	bknpower	PhoIndx2		3.17511	= p5	
26	3	bknpower	norm		9.62439	= p6	
27	4	pollin	A1		0.174061	= p7	
28	4	pollin	Aslope		8.42536E-03	8g =	
29	4	pollin	psi1	deg	-28.5726	= p9	
30	4	pollin	psislope	- 5	-2.17965	= p10	

Respon	se par	ameters de	efined:				
Source Rpar S	No.: pectru	1 m Rmodel	Rpar_name	Unit	Value		
1 2 3 4	2 2 3 3	gain gain gain gain	slope offset slope offset		1.00382 -1.16966E-02 1.01830 -3.71765E-02	/- /- /- /-	7.66325E-04 4.18351E-03 7.91108E-04 3.97899E-03

Test statistic : Chi-Squared460.14using 441 bins.Null hypothesis probability of 1.23e-01 with 426 degrees of freedom

Polarimetric Response

Monitoring of the IXPE instrument

Rate

Corrected for ⁵⁵Fe calibration source decay

- The detectors on board IXPE present secular pressure variations, so some decrease is expected
 - Observed to be <1.5%
- Small or no effect on sensitivity
- Arf (and mrf) to be updated

Monitoring of the IXPE instrument

The combined variations in the detectors are fit by a model described in Luca Baldini+ 2021

- Double exponential fit of track length, gain and rate is good
- det2 shown on the right as example

Modulation factor

The modulation factor encapsulates the response of the detector to polarization

Polarization =

Amplitude of modulation

Modulation factor

Monitored using the polarized source (Cal A) at two energies

 Small increase, expected from secular pressure variations

For the Crab Nebula the statistical uncertainties on measurement and calibration are comparable

• The three detectors are in agreement and so correctly calibrated

- IXPE was launched in December 2021, opening this X-ray polarimetry window
 - Many detections of X-ray polarization
- Some systematic effects in the spectra seen with high statistics
 - Detectors cross normalization
 - Energy calibration good to ~1%
 - No effect on polarization
- Polarimetric response monitored to ~1%
 - Pre-launch response matrices will be updated soon

