Temperature-Dependent ACIS Response

Terry Gaetz

Chandra X-ray Center/Smithsonian Astrophysical Observatory

IACHEC 2023

T. Gaetz (CXC/SAO)

T-Dependent ACIS Response Width

IACHEC 2023 1/16

Chandra ACIS CCD response width: Radiation damage very early in the mission

- BI CCDs (S3, S1): little or no apparent change
- FI CCDs (I0 .. I3, S0, S2, S4, S5):
 - imaging area: greatly increased CTI
 - frame store: protected by a cover (AI, Au)
- $\, \bullet \,$ response width broadening \propto distance from readout
 - chipy-dependence
 - broadening \propto CTI
- increased focal plane $T_{FP} \longrightarrow$ increased CTI
- response width increase \propto overall T_{FP} -dependent CTI increase

くぼと くヨト くヨ

CALDB:

- detgain: PHA(chipx,chipy,EGrid,[CCD_ID])
 - $\,$ fixed grid of 30 energies: 0.1 .. 12.0 keV (\sim log-spacing)
- p2_resp: detector response width vs PHA
 - RMF generation factored into:
 - ideal (undamaged) CCD response
 - CTI broadening: convolve ideal with "scatter matrix"
 - five HDUs
 - 1 (FI) & 2 (BI) ideal response
 - 3 (FI) & 4 (BI) scatter matrices [CTI broadening]
 - 5 "gain tweaks"
 - Scatter Matrix
 - scatmtx(chipx,chipy,PHAGrid) (per CCD_ID);
 40...3100 ADU (~ log-spacing);
 fixed grid of PHAs: 16 (FI), 20 (BI)

イロト イポト イヨト イヨト

Merge ECS data; split into Temperature Bins

- Merge External Calibration Source (ECS) data;
- Fit to merged epochs 40 to 91
- split into Focal Plane Temperature (T_{FP}) bins (C):

- -111.19 C to -109.19 C [2 deg C]
- -113.19 C to -111.19 C [2 deg C]
- -115.19 C to -113.19 C [2 deg C]
- -117.19 C to -115.19 C [2 deg C]
- -119.19 C to -117.19 C [2 deg C]
- -120.19 C to -119.19 C [1 deg C] [cold] [current CALDB]
- Later: examine smaller ECS epoch ranges
 - check for any time variation
 - not feasible for all T_{FP} bands

< 🗇 🕨 < 🖃 🕨 <

Extract & Fit Spectra on "Tiles": [Δ chipx, Δ chipy]

- Extract spectra from ECS data on "tiles" (chipx,chipy)
 - I0..I3, S2: Δchipx=64, Δchipy=64
 fit lines: [ECS:] Al-Kα, Ti-Kα, β, Mn-Kα, β, [BGD:] Au-L_{a1}
- Fitting: use RMF with no CTI broadening
- line profile (Xspec local model 2kfz):

$$(1 + x^2)^{-\alpha}$$
, $\alpha = \alpha_1 [x < 0]$, $\alpha = \alpha_2 [x > 0]$

- $x = (E E_0)/\Delta$
- $\bullet \ 2\Delta \sim FWHM$
- $\Delta \Rightarrow \texttt{LI_WIDTH}$ in FI scatter matrix
- header keywords: $\alpha_1 \Rightarrow \text{L1ALPH1} = 3.7; \alpha_2 \Rightarrow \text{L1ALPH2} = 1.9$

くぼと くヨト くヨ

- These fits:
 - $\, \bullet \,$ Width Scaling with Energy: width $\propto E^{0.12} + 0.3 E \sim E^{0.44}$
 - only AI-K α width allowed to vary
 - Ti-K α , Mn-K α , Au-L_{a,1} scaled to Al-K α width
 - Ti-K β scaled and tied to Ti-K α width
 - Mn-K β scaled and tied to Mn-K α width
 - BG line Au-L_{a,1}: weak
 - may be ok at lower T_{FP}

Merged Epochs 40 to 91 (\sim 2010 to \sim 2022) Low vs high chipy: Left: –120 to –119C, Right: –109 to –107C

T-Dependent ACIS Response Width

For each ccd and focal plane temperature bin:

- Use detgain to interpolate p2_resp:
 - fixed PHAGrid \Rightarrow to fixed detgain EGrid:
 - $[32 \times 32 \times 16] \Rightarrow [32 \times 32 \times 30]$
- Interpolate p2_resp to ECSGrid (6 line energies)
 - I1_width[chipx,chipy,EGrid] \Rightarrow I1_width[chipx,chipy,ECSGrid]
 - $[32 \times 32 \times 30] \Rightarrow [32 \times 32 \times 6]$
- scale I1_width[chipx,chipy,ECSrid] ([32 × 32 × 6] Currently: overall scale and linear in chipy:
 - $a_0(1 + a_1 chipy)$
 - may need to add quadratic: $a_0 + a_1 chipy + a_2 (chipy chipy_0)^2$
- Least Absolute Difference estimate of ECS line widths vs.CALDB line widths.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ECS line fits vs. T_FP ; tiles 64 × 64 (chipx,chipy) Fits to I3 ECS line widths; each panel: T_{FP} up, CHIPY right

T. Gaetz (CXC/SAO)

T-Dependent ACIS Response Width

IACHEC 2023 9/16

CALDB p2_resp: L1_WIDTH: energy vs chipy Left: mapped PHAGrid to EGrid. Right: ECSGrid (ECS/BG line energies)

LAD Fit parameters (preliminary

IACHEC 2023 11/16

Э

590

ъ

・ ロ ト ・ 四 ト ・ 回 ト ・

diffs: ECS linewidth - scaled CALDB linewidth

 E_{ECS} vs chipy

T. Gaetz (CXC/SAO)

T-Dependent ACIS Response Width

IACHEC 2023 12/16

590

Spatial structure: chipy vs chipx; LAD differences Top: 1.49keV; Bottom: 5.90keV

T-Dependent ACIS Response Width

IACHEC 2023 13/16

Apply Scale Parameters to I1_width[chipx,chipy,EGrid] Left: L1_WIDTH (N0008); Right: L1_WIDTH (N9974) (*a*₀ = 1.744, *a*₁ =6e-5i)

Map EGrid to PHAGrid [32,32,30] \Rightarrow [32,32,16] Left: L1_WIDTH (N0008); Right: L1_WIDTH (N9974)

N9974, I3: [EGrid(keV) vs. chipy]

T. Gaetz (CXC/SAO)

T-Dependent ACIS Response Width

IACHEC 2023 15/16

Summary

- fit ECS data:
 - 6 energies, tiles 64 \times 64 (chipx, chipy)
 - interpolate to 32×32 tiles
- map CALDB I1_width data to [32,32,6] grid (ECSgrid: 6 lines)
- scale I1_width data: $a_0(1 + a_1 chipy)$, subtract (LAD minimization)
- Inear scaling works pretty well, but ...
- Plan:
 - adjust scaling matrix for residual chipx structure
 - adjust scaling matrix for residual chipy quadratic structure
 - high T_{FP}: may need additional energy scaling
- Testing plan:
 - generate 32x32 scaling matrix; apply to full CALDB I1_width data;
 - convert back to I1_width[32,32,EGrid]; inject into p2_resp
 - refit ECS data with gaussian lines, allow line width to vary
 - check gaussian line width
 - iterate?

イロト イポト イヨト イヨト