

Ground and In-orbit Verifications of the XRISM Timing System

Yukikatsu Terada^{a,b}

Megumi Shidatsu^c, Takashi Kominato^d, So Kato^a, Ryohei Sato^a, Minami Sakama^a, Takumi Shioiri^a, Yuki Niida^c, Makoto Sawada^e, Chikara Natsukari^b, Makoto, S. Tashiro^{a,b}, Kenichi Toda^b, Hironori Maejima^b, Katsuhiro Hayashi^b, Tessei Yoshida^b, Shoji, Ogawa^b, Yoshiaki Kanemaru^b, Akio Hoshino^b, Hiromitsu Takahashi^f, Masayoshi Nobukawa^g, Tsunefumi Mizuno^f, Kazuhiro Nakazawa^h, Shin' ichiro Unoⁱ, Ken Ebisawa^b, Satoshi Eguchi^j, Satoru Katsuda^a, Aya Kubota^k, Naomi Ota^l, Atsushi Tanimoto^m, Yuichi Terashima^c, Yohko, Tsuboiⁿ, Yuusuke Uchida^o,
Hideki Uchiyama^p, Shigeo Yamauchi^l, Tomokage Yoneyamaⁿ, Satoshi Yamada^q, Nagomi Uchida^b, Shin Watanabe^b, Ryo Iizuka^b, Rie Sato^b, Chris Baluta^r, Matt Holland^r, Michael Loewenstein^{r,s}, Eric D. Miller[†], Tahir Yaqoob^r, Robert S. Hill^r, Trisha, F. Doyle^r, Efrain Perez-Solis^r, Morgan D. Waddy^r, Mark Mekosh^r, Joseph B. Fox^{r,}, Teruaki Enoto^u, Takaaki Tanaka^v, Katja Pottschmidt^r, Kotaro Fukushima^b, Yugo Motogami^a, Toshihiro Takagi^{c,} and XRISM SOT/CalIP team

a Saitama U., b JAXA, c Ehime U., d NEC coop., e Rikkyo U., f Hiroshima U., g Nara U. of Edu., h Nagoya U., i Nihon Fukushi U., j Fukuoka U., k Shibaura IT, I Nara Womens U., m Kagoshima U., n Chuo U., o Tokyo U. of Sci., p Shizuoka U., q RIKEN, r NASA GSFC, s U. of Maryland, t MIT, u Kyoto U., v Konan U.

Parador

Timing Requirement and Timing System

Science Requirement on Timing (absolute timing accuracy)

Hitomi: 350 μ sec (50 μ sec goal)

Kouzu et al 2014 IEEE, Terada et al 2018 JATIS Terada et al 2024 SPIE proc in prep.

XRISM 1,000 $\mu {\rm sec}$

Timing requirement value was relaxed.

Timing System

- ✓ Carry GPS receiver
- ✓ Timing distribution via SpW
- \checkmark Time calculation on ground

Same system as Hitomi

Fig. 1 A schematic diagram of the logical topology of the Hitomi network.⁹ Boxes represent components onboard the spacecraft and ellipses are GPS satellites or the ground station. Communication lines (in blue) are realized by SpaceWire.

Error budget in timing accuracy

Three steps in the development of Timing System

Step I. Ground (before launch)

Component level development:

Design and verify the system by error items/components

Step 2. Commissioning phase (6 months after launch) Total verification: Check "overall" timing performance

Step 3. PV + Calibration phase (now) Parameter tuning: Tune timing parameters in CALDB Calibration: Measure absolute timing accuracy

Step 0. Hitomi results

XRISM uses the same timing system. Basically, all components satisfy the budget.

La Granja (Spain), May 2024

Step I. Ground timing verification test

Goal: Pre-check of the overall timing performance before launch. (i.e., check ID=A+B+C < 350 μ sec)

Time, Place, and configuration:

- 26-28 Jan 2021 @ NEC Fuchu (bus system level)
- 13 Sep 2021 @JAXA TKSC (spacecraft bus system only, room temperature)
- 4 Aug I Sep 2022 @ JAXA TKSC (flight configuration, thermal vacuum test)

Thermal Vacuum test 2022

Setup: TIME is assigned in the pipeline process on ground using TI and look-up table in HK. Ground system is synchronized with GPS time (TAI), which is used as a reference time.

Step I. Ground timing verification test

Result: Time assignment of HK during GPS synchronized mode

Accuracy of 'TIME' in the nominal mode is within the error budget (350 μ sec)

Step 2. Commissioning verification

Timing verification with mili-second pulsar, PSR B1937+21

- P = 0.00155780656918537300 sec
- $\dot{P} = -1.051003194988945 \times 10^{-19} \text{ sec/sec}$
- Exposure = 240 ksec

Note: Solar system ephemeris is different between NICER & XRISM

X Nicer ephemeris in 2017-2022; H. Sun et al. 2023

Periodic signal has been detected from ~ 700 events.

Step 2. Commissioning verification

Commissioning: timing stability of the timing system has been verified.

Step 3. Timing calibration with Crab

Summary

- I. XRISM uses the same timing system as Hitomi, carrying GPS receiver.
- 2. In the design phase, timing accuracy of each component was verified.
- 3. On ground, we performed the ground timing calibration and concluded that the timing system satisfies the science requirement.
- 4. In the commissioning phase, we verified the performance of timing system using periodic signals from PSR B1937+21, and the test has been passed.
- 5. Now in the PV + calibration phase, we performed simultaneous observation of Crab with NICER and NuSTAR in Mar 2024, to tune the timing parameters and measure absolute timing accuracy. -- on going.

Wao!