

On-ground calibration of the Wide-field X-ray Telescope (WXT) on board Einstein Probe (EP)

Huaqing Cheng (EPSC/NAOC)

On behalf of EPSC and WXT team

2024 May 13th 16th IACHEC meeting@ Segvia, Spain

Outline

- Introduction
- A brief review on the ground calibration of WXT
- Ground calibration
 - * MPO and CMOS calibration at NAOC
 - ⋆ FM5 Calibration at MPE/Panter
 - ⋆ Module calibration at IHEP/100XF
- Future work
- Summary

Instruments and Spacecraft

Wide-field X-ray Telescope and designed goals

Dr. Zhixing Ling

Dr. Chen Zhang

CMOS Focalplane Assembly

WXT module in Phase C

Parameter	Specification
Focal Length	375mm±2%
FOV	≥ 3600 square degrees
Modules	12
Effective Area	≥2.7cm²@1keV
Angular Resolution	≤5′ @1keV
Energy Resolution	≤170 eV@ 1.25 keV
Energy Range	0.5~4.0 keV
Location Accuracy	<2′ (J2000)
Time Resolution	≤0.05 s

Calibration schedule of the WXT Flight Model (FM)

Level of calibration	Object	Calibration Facility	Calibration Time
Device	MPO chips	NNVT	2022-2023
	CMOS chip	NAOC	2022-2023
Assembly	Mirror Assembly 1-12	NAOC/XIB	2022.4-2023.4
	Mirror Assembly 5	MPE/Panter	2022.9-2022.11
	CMOS assembly	SITP	2022.5-2023.3
Complete Module	FM1	IHEP/100XF	2022.8
	FM5 & FM11	IHEP/100XF	2023.5

The calibration of WXT instrument is a time-consuming and arduous campaign.

The ground calibration of WXT instrument

Effective Area, PSF Source Positioning Accuracy

Effective Area, Focus Search Focal Plane Mapping

Effective Area, PSF Source Positioning Accuracy

12 assemblies calibration @NAOC-XIB, 2022-04 to 2023-04

1 assembly calibration @MPE-Panter, 2022.10 3 modules calibration @IHEP, 2022.8 & 2023.5

Credit: Yanfeng Dai

Meanwhile, 54 CMOS chips (including 6 backups) were calibrated at NAOC.

Calibration of MPO assembly at NAOC

FM MA Focal plane mapping (209 test points for each FoV quandrant)

	FWHM R90 arcmin			
ASSM ID	Sec1	Sec2	Sec3	Sec4
FM1	4.3078	4.8344	4.5685	4.7376
FM2	4.337443	4.641851	4.758596	4.737322
FM3	4.548191	5.004448	4.970792	4.919192
FM4	4.139329	4.278519	4.086142	3.984573
FM5	4.360381	4.76959	4.331304	4.450248
FM6	3.987483	3.847239	3.904342	3.886328
FM7	3.787614	4.372452	4.183869	4.049289
FM8	4.128201	4.329604	4.383369	4.013506
FM9	3.87564	3.87423	3.967965	3.962235
FM10	4.277768	3.685402	4.158209	4.327053
FM11	4.661242	4.406602	4.448557	4.449075
FM12	4.224141	4.484852	4.297872	4.390398

Optics Assemblies FMs Calibration @NAOC

No PSF misalignment

Credit: Chen Zhang

The angular resolution ~3-5 arcmin for Optics Assemblies FMs, better than QMs.

Calibration of CMOS sensors at NAOC

GAIN and energy resolution

Credit: Zhixing Ling

Calibration of FM5 MA at MPE/Panter facility

Sep. 5 2022 OFM5@NAOC

Sep. 20 2022@MPE

Dec. 29 2022 Back to NAOC

Optics Assembly Calibration@Panter

	LEIA(OQM3)	EP OFM5
Focal Length	375mm	375mm
FOV	>18*18	>18*18
Angular Resolution	Best 4′ Arg<5′	Best 3', Arg<4.5'
Effective Area	>95%	>95%

Credit: Yanfeng Dai & Vadim Burwitz

MPE paper: Rukdee et al. 2023, https://doi.org/10.1117/12.2677479

Calibration of the 3 complete modules at IHEP

FM1@IHEP 100m facility, 2022.8

FM5, FM11 @IHEP 100m facility, 2023.5

PSF before and after module module integration

The PSF shape remains stable after integrating to the complete module

Module calibration: PSF

Foal plane mapping within the FoV of FM1 @1.25 keV

Elliptical fitting of the PSF focal spot

PSF, FWHM~3-5' @1.25 keV no significant variations within the FoV

Module calibration: PSF shape at different energies

The PSF spread is larger at lower energies due to larger critical angle of grazing incidence.

Module calibration: Localization

The positional offset of the PSF can be used to calibrate the transform matrix and non-linear corrections. The estimated positioning accuracy ~ 1-2 arcmin

Module calibration: Effective area

The measured effective areas are generally consistent with simulation curve.

- The effective area is around 2-3 cm²
- Slight non-uniformity within the FoV (vignetting near the edge & blocking of the mounting frame)
- The pattern can be reproduced by Monte Carlo simulations

Module calibration: Energy response of CMOS detectors

The measured properties of the CMOS detectors (GAIN, energy resolution) remain unchanged after integration.

Goals and achievements

Parameter	Specification/Goals	Measurements
Focal Length	375mm±2%	~374.9 - 382.5mm
FOV	≥ 3600 square degrees	~3850 square degrees
Modules	12	12
Effective Area	≥2.7 cm²@1keV	≥3 cm²@1keV
Angular Resolution	≤5′ @1keV	~3-5′ @1keV
Energy Resolution	≤170 eV@ 1.25 keV	~130 eV@ 1.25 keV
Energy Range	0.5-4.0 keV	~0.35-6 keV
Location Accuracy	<2′ (J2000)	~1-2′ (J2000)
Time Resolution	≤0.05 s	0.05 s

In general, the designed goals are fulfilled based on ground measurements.

Future work

- The 1st version CALDB has been constructed based on ground calibration results and applied to EP-WXT data analysis
- Update the calibration database with in-flight calibration observations (see Heyang's talk)
- Paper publication

Experimental Astronomy (2024) 57:10 https://doi.org/10.1007/s10686-024-09932-0

RESEARCH

Ground calibration result of the *Lobster Eye Imager for Astronomy*

Huaqing Cheng¹ · Zhixing Ling^{1,2} · Chen Zhang^{1,2} · Xiaojin Sun³ · Shengli Sun³ · Yuan Liu¹ · Yanfeng Dai¹ · Zhenqing Jia¹ · Haiwu Pan¹ · Wenxin Wang¹ · Donghua Zhao¹ · Yifan Chen³ · Zhiwei Cheng³ · Wei Fu³ · Yixiao Han³ · Junfei Li³ · Zhengda Li³ · Xiaohao Ma³ · Yulong Xue³ · Ailiang Yan³ · Qiang Zhang³ · Yusa Wang⁴ · Xiongtao Yang⁴ · Zijian Zhao⁴ · Weimin Yuan^{1,2}

Advertising The ground calibration result of LEIA has been published (Cheng et al. 2024) Doi: <u>10.1007/s10686-024-09932-0</u>

Received: 12 December 2023 / Accepted: 22 February 2024 / Published online: 7 March 2024 © The Author(s), under exclusive licence to Springer Nature B.V. 2024

Summary

- Extensive tests and calibrations on different levels of devices, assemblies and complete modules were carried out before the launch of EP.
- * The FMs show generally **better performance** than QM(LEIA).
- The angular resolution of WXT can reach ~3-5 arcmin, without significant variations within the FoV.
- The effective area is ~ 3 cm² @ 1keV, ~ 1 cm² @ 4keV, only showing mild non-uniformity within the FoV.
- The CMOS detectors show similar performance in GAIN and energy resolution.
- The 1st version of calibration CALDB has been built and applied to EP/WXT data analysis, and will be updated via in-flight calibration recently.

<u>Contact:</u> Huaqing Cheng (EPSC) hqcheng@nao.cas.cn