

In-flight calibration of the Wide-field X-ray Telescope on board Einstein Probe

He-Yang Liu & Huaqing Cheng on behalf of EP Science Centre

IACHEC @ Parador de La Granja 2024-05-13

- Overview of the in-flight calibration observations of WXT
- Key performance goals
- In-flight calibration status
 - * point spread function and angular resolution
 - ★ positioning accuracy
 - energy band
 - ★ effective area
 - energy response
- Future plan and issues
- Summary

In-flight calibration observation log & schedule

Round	Calibration item	Target	Calibrated module	Observational date
1	Energy response	Cas A, Tycho	4, 10	2024/1/19 - 2024/1/25
	PSF, angular resolution		10 modules (except Module 3 & 9)	2024/1/25 - 2024/3/8
	Positioning accuracy	Crab		
	Energy band			
	Effective area			
2	PSF, angular resolution	Sco X-1	3, 9	2024/5
	Positioning accuracy			
	Energy band			

Scanning the detectors (6x6) by targeting on the Crab

In-flight calibration observations

Key Performance Goals

No.	Calibration item	Goal	Requirement of systematics/precision	
1	Positioning Accuracy	≤ 2 arcmin (J2000, 90% C.L.)	_	
2	Energy band	0.5 – 4 keV	_	
3	Effective area	\geq 2 cm ² @1keV	\leq 20%(1 σ)	
4	Angular resolution	\leq 5 arcmin @1keV	_	
5	Energy resolution	\leq 170 eV @1.25 keV	$\leq 20\%(1\sigma)$	

1. Positioning Accuracy

- * 10 modules (except 3 & 9) calibrated via Crab observations
- **Highest priority!**

- Goal: better than 2 arcmin (J2000, 90% C.L.)
- Method: calibration of the rotation matrix and non-linear corrections with a PSF scan in 6x6 mesh grid

By now positioning accuracy better than 2 arcmin (J2000,90% C.L.)

2. Energy band

Spectral analysis of the Crab nebula (along the center direction, FM1, CMOS3)

3. Effective Area

- Modules: 10 modules (except 3&9)
- Goals:
 - ⋆ Absolute effective area ≥2 cm²@1keV
 - Precision (systematics) better than 20% (1 σ)
- Method:
 - Estimate the absolute effective area via on-axis observations
 - Estimate the systematics via on-axis and off-axis observations

Crab spectral fitting along center direction (FM1, CMOS3)

The simulated effective area curve (built based on ground calibration) provides a reasonable description to the in-flight effective area, i.e. ~3 cm²@1keV (ground values)

Effective Area: systematics

The systematics of the effective area is generally less than $10\%(1\sigma)$.

4. PSF and angular resolution

- 10 modules (except 3 & 9) calibrated via Crab observations
- Goal: angular resolution $\leq 5 \operatorname{arcmin}@1 \operatorname{keV}$
- Method: PSF extraction and analysis with elliptical function

PSF 6x6 scanning array(FM12, CMOS48)

PSF analysis (elliptical fitting, method identical to that employed on ground)

PSF: angular resolution

Summary of the FWHM (R60: the 60 percentile)

The angular resolutions mostly fall within 5 arcmin, fulfilling our goals.

In-flight angular resolution vs. Ground values

No noticeable degradation in the imaging quality was found after launch.

5. Energy response of the CMOS detectors

- Modules: 4&10
- Goals:
 - * Energy resolution \leq 170 eV @1.25 keV (Mg K α)
 - * Measurement precision better than 20% (1 σ)
- Method:
 - ⋆ Perform emission line analysis to Tycho spectra
 - ★ Estimate the resolution at 1.25 keV by extrapolation

Energy response of the CMOS detectors

Spectral analysis of (stacked) spectrum of Tycho (FM4, CMOS16)

Energy resolution (compared with ground measurements, FM4, CMOS16)

No obvious variations in GAIN and energy resolution for most of the detectors after launch.

Extrapolate from 1.86 keV and obtain the resolution @ 1.25 keV

Flight Model No.	CMOS	Resolution @ 1.25 keV	Precision(1 σ) %
4	13	134.1+/-1.9	1.4
4	14	131.7+/-1.6	1.2
4	15	120.2+/-1.9	1.6
4	16	129.6+/-3.4	2.6
10	17	119.1+/-1.5	1.3
10	18	121.6+/-1.7	1.4
10	19	121.6+/-2.4	2.0
10	20	130.7+/-2.0	1.5

The energy resolution @1.25 keV is in range of 120-140 eV with a precision of 1-3% (1 σ)

- The observations of Sco X-1 are ongoing for the calibration of FM
 3 & 9 concerning PSF, spatial resolution and positioning accuracy.
- Summary of the calibration and paper publication.

 The 2 keV bump in the Crab spectrum

- This feature was already found in ground calibrations and LEIA data
- Likely due to the incomplete understanding on the Iridium absorption

 2. The EC relations of two detectors (CMOS 5&7) appears to vary by a factor of 10%

- The reason for GAIN variation remains unclear
- We plan to observe Cas-A/Tycho for GAIN correction

Summary

- Preliminary analysis of the WXT data shows
 - ★ Positioning accuracy: less than 2 arcmin (J2000, 90% C.L.)
 - * Angular resolution: 3.3 4.4 arcmin (FWHM, R60)
 - * Effective area: ~3.0 cm²@1keV, systematics ~4-13% (1 σ)
 - * Energy resolution: ~120 140 eV @1.25 keV, Precision ~1-3% (1 σ)
 - ⋆ Detected band: 0.4 6 keV
- The in-flight performances fulfill design goals, without noticeable degradation after launch until now.

A solid foundation for scientific discovery!

<u>Contact:</u> Huaqing Cheng (EPSC) <u>hqcheng@nao.cas.cn</u> <u>Heyang Liu (EPSC)</u> Liuheyang@nao.cas.cn