**Neutron star Interior Composition ExploreR** 

GSFC

## **ANICER Look at Cross-calibration** using 3C 273 Jeremy Hare (NASA/GSFC/CRESST/CUA) on behalf of the NICER team

MIT KAVLI INSTITUTE











# 1) NICER Light Leak work 2) Update on 3C 273 analysis 3) IACHEC Online 4) Summary









#### First Jupiter Observation

#### **Example undershoot rate versus time plot for all detectors**

Taken from first observations of Jupiter from Nov. 16, 2023

Note 5-5 and 2-6 are highly elevated









Area missing calculated from high fidelity images taken by astronaut on ISS

Detectors that agree (i.e., are in the top five between image and undershoot analysis highlighted in green

Relatively good agreement between image and undershoot analysis

Other work: Detector window analysis, optical blocking filter analysis, shelf analysis, pulsed crab emission

## Light Leak

| # | Area Missing | Jupiter 1 | Jupiter 2 | VEGA_1 | VEGA_2 |
|---|--------------|-----------|-----------|--------|--------|
| 1 | 5-5          | 2-6       | 2-6       | 2-6    | 2-6    |
| 2 | 7-3          | 5-5       | 5-5       | 5-5    | 5-5    |
| 3 | 4-5          | 2-7       | 2-7       | 1-3    | 1-3    |
| 4 | 1-8          | 7-3       | 7-3       | 2-7    | 2-7    |
| 5 | 2-6          | 1-8       | 6-7       | 1-8    | 1-8    |







## Background

- NICER is a non-imaging instrument so no simultaneous background is obtained
- Must rely on blank sky backgrounds and/or background models to subtract background











- Break parameter space into cells, measure background in each shell (library of spectra)
- Application: calculate exposure in each shell, make weighted sum of library spectra

## Two ways of handling background



- Measure "basis vector" of each unique component

- Make smoothed version of template as XSPEC model
- Normalized based on known telemetry (overshoots, etc)
- Application: predict norms from telemetry & load into XSPEC





## **IACHEC Observing Campaign 3C 273**



3C\_273



7

## **IACHEC Observing Campaign 3C 273**

## 7 total epochs included

NICER + SEXTANT

U STELLARUM, SCIEN

NSA+ GSFC

| TIME  | NIC_ID     | NU_ID       | $NU\_S$      | CH_ID | $CH\_S$      | XMM_ID    | $XMM_S$       | $SW_ID_1$ | $SW_S_1$     |
|-------|------------|-------------|--------------|-------|--------------|-----------|---------------|-----------|--------------|
| 57931 | 10100101   | 10302020002 | S            | 19867 | S            | 414191301 | S             | 50900023  | S            |
| 57931 | 10100102   | 10302020002 | $\mathbf{S}$ | 19867 | $\mathbf{S}$ | 414191301 | $\mathbf{S}$  | 50900024  | $\mathbf{S}$ |
| 57932 | 10100103   |             |              | 19867 | NS           | 414191301 | $\mathbf{NS}$ |           |              |
| 58304 | 1010100104 | 10402020006 | $\mathbf{S}$ | 20709 | $\mathbf{S}$ | 414191401 | $\mathbf{S}$  | 50900025  | $\mathbf{S}$ |
| 58304 | 1010100105 | 10402020006 | $\mathbf{S}$ | 20709 | $\mathbf{S}$ | 414191401 | $\mathbf{S}$  | 50900025  | $\mathbf{S}$ |
| 58667 | 2010100101 | 10502620002 | $\mathbf{S}$ | 21815 | NS           | 810820101 | $\mathbf{S}$  | 50900026  | $\mathbf{S}$ |
| 58667 | 2010100102 | 10502620002 | $\mathbf{S}$ | 21815 | $\mathbf{S}$ | 810820101 | $\mathbf{S}$  | 50900027  | $\mathbf{S}$ |
| 59036 | 3010100101 | 10602606002 | $\mathbf{S}$ | 22828 | $\mathbf{S}$ | 810821501 | $\mathbf{S}$  | 89029001  | $\mathbf{S}$ |
| 59037 | 3010100102 | 10602606002 | $\mathbf{S}$ | 22828 | NS           | 810821501 | $\mathbf{S}$  | 89029002  | $\mathbf{S}$ |
| 59319 | 3626010102 | 60601004002 | $\mathbf{S}$ |       |              |           |               |           |              |
| 59319 | 3626010103 | 60601004002 | $\mathbf{S}$ |       |              |           |               |           |              |
| 59375 | 4010100101 | 10702608002 | $\mathbf{S}$ | 24585 | NS           | 810821601 | $\mathbf{S}$  | 50900028  | $\mathbf{S}$ |
| 59375 | 4010100102 | 10702608002 | $\mathbf{S}$ | 24585 | $\mathbf{S}$ | 810821601 | $\mathbf{S}$  | 50900029  | $\mathbf{S}$ |
| 59376 | 4010100103 |             |              | 24585 | NS           | 810821601 | $\mathbf{NS}$ |           |              |
| 59758 | 5010100105 | 10802608002 | $\mathbf{S}$ | 25691 | $\mathbf{S}$ | 810821901 | $\mathbf{S}$  | 89372001  | $\mathbf{S}$ |





## First NICER observation of 3C 273







## First observation light curves





#### Procedure

- Followed Madsen et al. (2017)
- Spectra extracted from each observatory following standard procedures (e.g., reprocessing, cleaning)
- Spectra binned to 1 count per bin for use with C-stat
- Spectra fit in 1-5 keV energy range
- Updated HI4PI N<sub>H</sub> maps give  $1.69 \times 10^{20}$  cm<sup>-2</sup> (HI4PI collab. et al. 2016)
- $N_{H}$  fixed to 1.79x10<sup>20</sup> cm<sup>-2</sup> using Wilms abundances (Wilms et al. 2000) and Verner cross-sections (Verner et al. 1996)
- C-stat used for fitting spectra
- Chi-square/d.o.f. reported by loading in best-fit cstat model and using 50 cts/bin data





## Analysis updates

#### 

|       |     |             | U                          | <b>a</b> |                |              |               |     |             | N                   | lew     |                     |                   |
|-------|-----|-------------|----------------------------|----------|----------------|--------------|---------------|-----|-------------|---------------------|---------|---------------------|-------------------|
|       |     |             | $N_{ m TT}$                | Г        | F1 - 1 - 1     | $\chi^2/dof$ |               |     |             | $N_{ m H}$          | Г       | $F_{1-5 \rm \ keV}$ | $\chi^2/{ m dof}$ |
|       |     |             | $10^{20} \text{ cm}^{-10}$ | 2        | $10^{-11} cgs$ | $\chi$ / doi | -             |     |             | $10^{20}~{ m cm}^-$ | -2      | $10^{-11}~{ m cgs}$ |                   |
| ~     | ~ • |             |                            |          |                |              | Sw            | Sub | 00050900023 | 1.79                | 1.55(2) | 5.42(6)             | 119.52/13         |
| Swift | Sub | 00050900023 | 1.79                       | 1.35(6)  | 5.0(1)         | 20.4/27      | Sw            | Sub | 00050900024 | 1.79                | 1.48(2) | 5.47(5)             | 204.92/20         |
| Swift | Sub | 00050900024 | 1.79                       | 1.32(4)  | 5.7(1)         | 28.1/29      | $\mathbf{Sw}$ | Sub | 23 + 24     | 1.79                | 1.51(1) | 5.45(4)             | 339.05/3          |
|       |     |             |                            |          |                |              |               |     |             |                     | 1 1     |                     |                   |

- Now using fluxcorr and caladjustment for XMM-Newton.
- Merging both NICER observations and both Swift observations

#### Updated Swift-XRT analysis, now using online analysis tools, improved light curve and better agreement between Swift and other spectra







| Table 2.                | Fits pe              | erformed in the | e 1-5  keV energy      | ergy range | using cstat              |                   |
|-------------------------|----------------------|-----------------|------------------------|------------|--------------------------|-------------------|
| Obs.                    | $\mathbf{Bkg}$       | ObsID           | $N_{ m H}$             | $\Gamma$   | $\rm F_{1-5\ keV}$       | $\chi^2/{ m dof}$ |
|                         |                      |                 | $10^{20} { m cm}^{-2}$ |            | $10^{-11} \mathrm{~cgs}$ |                   |
| NIC                     | 3C50                 | 10100101        | 1.79                   | 1.593(7)   | 5.17(2)                  | 376.3/378         |
| NIC                     | 3C50                 | 10100102        | 1.79                   | 1.565(4)   | 5.39(1)                  | 364.15/397        |
| NIC                     | 3C50                 | 10100100        | 1.79                   | 1.571(3)   | 5.34(1)                  | 361.10/397        |
| CXO                     | $\mathbf{Sub}$       | 19867           | 1.79                   | 1.51(1)    | 5.61(4)                  | 228.14/583        |
| Sw                      | $\operatorname{Sub}$ | 00050900023     | 1.79                   | 1.55(2)    | 5.42(6)                  | 119.52/154        |
| Sw                      | $\operatorname{Sub}$ | 00050900024     | 1.79                   | 1.48(2)    | 5.47(5)                  | 204.92/205        |
| Sw                      | $\mathbf{Sub}$       | 23 + 24         | 1.79                   | 1.51(1)    | 5.45(4)                  | 339.05/361        |
| $\mathrm{XMM}_{PN}$     | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.586(5)   | 4.84(1)                  | 887.03/800        |
| $\mathrm{XMM}_{MOS1}$   | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.616(7)   | 5.11(2)                  | 800.05/664        |
| $\mathrm{XMM}_{MOS2}$   | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.597(7)   | 5.28(2)                  | 720.57/675        |
| $\mathrm{XMM}_{PN,abs}$ | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.590(5)   | 4.83(1)                  | 887.03/800        |
| ${ m XMM}_{MOS1,abs}$   | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.632(7)   | 4.89(2)                  | 721.77/664        |
| ${ m XMM}_{MOS2,abs}$   | $\mathbf{Sub}$       | 0414191301      | 1.79                   | 1.596(7)   | 5.02(2)                  | 686.90/675        |





#### Preliminary Results 1-5 keV





#### Preliminary Results 3-7 keV

Table 3. NEW Fits performed in the 3-7 keV energy range using cstat.

| Obs.                           | Bkg                  | ObsID       | $N_{ m H}$              | $\Gamma$ | $\rm F_{1-5\ keV}$  | $\chi^2/{ m dof}$ |
|--------------------------------|----------------------|-------------|-------------------------|----------|---------------------|-------------------|
|                                |                      |             | $10^{20} { m ~cm^{-2}}$ |          | $10^{-11}~{ m cgs}$ |                   |
| NIC                            | 3C50                 | 10100101    | 1.79                    | 1.63(4)  | 3.58(3)             | 249.76/258        |
| NIC                            | 3C50                 | 10100102    | 1.79                    | 1.55(2)  | 3.86(2)             | 398.18/392        |
| NIC                            | 3C50                 | 10100100    | 1.79                    | 1.56(2)  | 3.79(2)             | 409.35/397        |
| $\rm XMM_{\rm PN}$             | Sub                  | 0414191301  | 1.79                    | 1.49(2)  | 3.49(2)             | 671.99/653        |
| $\mathrm{XMM}_{\mathrm{M1}}$   | Sub                  | 0414191301  | 1.79                    | 1.31(3)  | 3.85(3)             | 416.37/380        |
| $\mathrm{XMM}_{\mathrm{M2}}$   | Sub                  | 0414191301  | 1.79                    | 1.41(3)  | 3.89(3)             | 421.74/395        |
| ${ m XMM}_{ m PN,abscorr}$     | Sub                  | 0414191301  | 1.79                    | 1.55(2)  | 3.43(2)             | 852.11/797        |
| $\rm XMM_{M1,abscorr}$         | Sub                  | 0414191301  | 1.79                    | 1.46(3)  | 3.48(2)             | 416.55/380        |
| $\rm XMM_{M2,abscorr}$         | Sub                  | 0414191301  | 1.79                    | 1.51(3)  | 3.56(2)             | 424.64/395        |
| CXO                            | Sub                  | 19867       | 1.79                    | 1.65(5)  | 4.08(5)             | 68.35/158         |
| $\mathbf{Swift}$               | Sub                  | 00050900023 | 1.79                    | 1.32(8)  | 4.06(8)             | 48.53/53          |
| $\mathbf{Swift}$               | Sub                  | 00050900024 | 1.79                    | 1.59(6)  | 4.12(6)             | 70.45/84          |
| $\mathbf{Swift}$               | Sub                  | 23 + 24     | 1.79                    | 1.49(5)  | 4.10                | 127.5/139         |
| $\operatorname{NuSTAR_{FPMA}}$ | Sub                  | 10302020002 | 1.79                    | 1.62(3)  | 4.19(3)             | 98.27/97          |
| $\operatorname{NuSTAR_{FPMB}}$ | $\operatorname{Sub}$ | 10302020002 | 1.79                    | 1.61(3)  | 4.16(3)             | 107.18/97         |







## Preliminary Results 3-7 keV







#### **IACHEC Online**

#### **3C 273 Observations and Data Overview**

Created by Felix Fuerst, last modified on Jul 28, 2023 05:37

#### Purpose

This page is intended to collect all relevant observations of 3C273 performed under the coordinated IACHEC calibration program. We want to collect observation information (e.g., dates, exposure times, modes, etc.) as well as the extracted data by the instrument teams. The data will be available for use by any calibration team within the IACHEC consortium to perform instrument calibration.

#### **Common GTIs**

While most observations have a significant overlap, the start and stop times between the different missions do not align. We aim to provide a set of common GTIs that should be used for all instruments to select on the most useful overlapping time range. Data should be provided for the whole observation for each instrument, as well as the one filtered for the common GTI.

#### Observation overview

#### 2021

| Instrument         | ObsID       | StartDate           | EndDate             | Good exposure | Link to Data |
|--------------------|-------------|---------------------|---------------------|---------------|--------------|
| XMM-Newton EPIC/pn | 0810821601  | 2021-06-09 19:26:58 | 2021-06-10 13:30:18 |               |              |
| NuSTAR FPM         | 10702608002 | 2021-06-09 18:36:09 |                     |               |              |
| Chandra            | 24585       |                     |                     |               |              |

#### 2020

| Instrument         | ObsID       | StartDate           | EndDate             | Good exposure (ks) | Link to Data |
|--------------------|-------------|---------------------|---------------------|--------------------|--------------|
| XMM-Newton EPIC/pn | 0810821501  | 2020-07-06 11:59:20 | 2020-07-07 07:24:20 | 47.632             | 0810821501_  |
| NuSTAR FPM         | 10602606002 | 2020-07-0604:56:09  | 2020-07-0808:22:01  |                    |              |
| Chandra            | 22828       |                     |                     |                    |              |

#### Made by Felix



| 21501_ann135-720_spec.tar.gz |
|------------------------------|
|                              |
|                              |



No labels





## **IACHEC Online**

- Website includes spectra reduced by each observatory team
- Python notebooks that will download the spectra from website
- Models used will also be included
- Notebooks can be used to choose energy ranges and produce contour plots

#### 1.650 NICER Swift 1.625 XMM\_PN 1.600 CXO 1.575 \_ **1.550** 1 1.525 1.500 1.475 1.450 $(F_{1-5keV})$ **x** 10<sup>-12</sup> **erg cm**<sup>-2</sup> **s**<sup>-1</sup> 48 58







## **IACHEC Online**

- Can eventually include analysis scripts through Python notebooks, and plot contours.
- through a python interface (CIAO, heasoftpy, SAS notebooks).

which will download the observations and reduce them, fit the spectra,

• Swift online has API, so is scriptable. All other pipelines can also be run



## SA+GS

## **Good and Bad**

- **Good:** Would allow for results from all IACHEC observing campaigns to be easily accessible to the community
- Many datasets go unpublished, once scripts are made, all subsequent datasets for a given source can be analyzed quickly
- Users can fit in energy ranges they are most interested in and not ones predefined by us
- **Bad:** Users can fit in energy ranges they are most interested in and not ones predefined by us. Model may be invalid in energy range chosen. • Some models are complex and may need lots of explanation (e.g., Cas A) May lead to users asking many questions about analysis that would need
- to be answered







- 3C 273
- (2017)
- teams

• I appreciate any feedback, questions, and/or suggestions!

NICER has taken part in 6 (7 with NuSTAR) calibration observing campaigns of

Re-started the analysis of these is observations with an updated analyses for XMM-Newton and Swift-XRT, with results still consistent with Madsen et al.

We should consider ways to make the IACHEC datasets and analyses more accessible to the community, hosting these spectra in a public database could hep facilitate this, but will require some upfront work from the observatory

