

NuSTAR U

May 14, 2024

Daniel R. Wik

Galaxy Cluster-based Evidence for **Conflicting Calibrations between NuSTAR** and XMM-Newton/Chandra at 3-10 keV Energies

Daniel R. Wik (University of Utah)

CHANDRA X-RAY OBSERVATORY

Based mostly on work from **Cicely Potter** (Utah) and **Fiona Lopez**

(Texas A&M)

XMM-NEWTON

Galaxy Clusters: Temperature Discrepancy

NuSTAR

May 14, 2024

Daniel R. Wik

Schellenberger+ 2015

NuSTAR's Contribution

- Discrepancy is worst at the highest temperatures where *NuSTAR*'s sensitivity is most useful
- Even for low *kT*s, *NuSTAR* has a better handle on the exponential turnover of the bremsstrahlung continuum, which drives *kT* estimates
- In most cases, foreground absorption becomes almost negligible and lines have less impact on the continuum

Area (cm²) Effective

NuSTAR

May 14, 2024

Daniel R. Wik

Global kT Measurements (Chandra vs. NuSTAR)

A2146

A2163 May 14, 2024

NuSTAR

U

Wallbank+ 22

A665

 $\mathbf{A754}$ IACHEC Parador de La Granja

Daniel R. Wik

4

Global kT Measurements (Chandra vs. NuSTAR)

NuSTAR U

May 14, 2024

$kT_{C,(0.6-9)}$	kT_C	kT_N
keV	keV	keV
7.08 ± 0.14	8.9 ± 0.66	6.72 ± 0
$16.36\pm0.70^{\dagger}$	12.23 ± 1.15	9.72 ± 0
7.81 ± 0.15	7.38 ± 0.41	$6.43 \pm 0.$
5.30 ± 0.36	7.15 ± 2.55	4.87 ± 0
8.66 ± 0.23	8.29 ± 0.62	7.36 ± 0
9.09 ± 0.17	9.25 ± 0.47	8.57 ± 0
13.57 ± 0.36	14.57 ± 0.96	12.85 ± 0
14.71 ± 0.46	15.80 ± 1.09	12.57 ± 0
% or 169	% lower	
ally, <i>NuST</i>	AR shoul	d be
highor k	Tc > m	uct ha
	12 —> 111	U21 DG
ifforonood		
merences	s in callor	ation
merences	s in calibr	ration
	keV 7.08 \pm 0.14 16.36 \pm 0.70 [†] 7.81 \pm 0.15 5.30 \pm 0.36 8.66 \pm 0.23 9.09 \pm 0.17 13.57 \pm 0.36 14.71 \pm 0.46 Chandra P NuSTA % or 169 ally, NuSTA	keV keV 7.08 ± 0.14 8.9 ± 0.66 $16.36 \pm 0.70^{\dagger}$ 12.23 ± 1.15 7.81 ± 0.15 7.38 ± 0.41 5.30 ± 0.36 7.15 ± 2.55 8.66 ± 0.23 8.29 ± 0.62 9.09 ± 0.17 9.25 ± 0.47 13.57 ± 0.36 14.57 ± 0.96 14.71 ± 0.46 15.80 ± 1.09 Chandra kT of 10 k ne NuSTAR kT is $\%$ or 16% lower Ally, NuSTAR shoul higher kTs —> mage

Wallbank+ 22

Daniel R. Wik

NuSTAR - Chandra Comparison

C-stat/dof: 3006/1567

NuSTAR U

May 14, 2024

Daniel R. Wik

C-stat/dof: 1105/964

NuSTAR U

NuSTAR - XMM-Newton Comparison

Cross-calibration with Relaxed Clusters

Cicely Potter

		kT	
	Cluster	(keV)	z
NuSTAR Large	Abell 2029	8.5	0.077
Program	Abell 478	7.3	0.088
(>100 kg pach)	Abell 1795	6.1	0.062
	Abell 2199	4.4	0.030

Reanalysis of *Chandra/XMM-Newton* data in exact same regions

May 14, 2024

Fiona Lopez

	Cluster	$kT_C \ ({ m keV})$	ΔkT_X (keV)	$\frac{T_C - T_X}{T_X}$	$\Delta kT_N \ ({ m keV})$
NuSTAR	RXC J1504	9.8 ± 0.8	0.2	0.53	0.8
	Abell 3571	8.1 ± 0.1	0.1	0.27	0.1
Cluster	Abell 3558	7.4 ± 0.3	0.1	0.35	0.2
Snapshot	Abell 1651	7.1 ± 0.3	0.1	0.16	0.1
	Abell 3391	6.6 ± 0.2	0.1	0.19	0.2
C Program	Abell 1650	6.4 ± 0.1	0.1	0.25	0.2
(20 ks each)	Abell 3158	6.0 ± 0.1	0.1	0.18	0.1
	Abell 3112	5.5 ± 0.1	0.1	0.36	0.2
	Abell 1644	5.3 ± 0.1	0.2	0.15	0.2
	Abell 496	5.2 ± 0.1	0.1	0.18	0.2
	<u>Abell 3562</u>	-5.0 ± 0.3	0.1	0.19	0.1

Extract same regions as in Schellenberger+ 2015 (r < 3.5', excising cores)

Daniel R. Wik

NuSTAR/Chandra/XMM-Newton of Abell 478

Chandra & XMM-Newton kT Profiles

U _____NuSTAR

May 14, 2024

Daniel R. Wik

IACHEC Parador de La Granja

10

Abell 478: Temperature Profiles

May 14, 2024

Daniel R. Wik

Observed Temperature Profiles

IACHEC Parador de La Granja

11

NuSTAR PSF Correction Using "Cross-ARFs"

Equivalent to ARF produced by nuproducts

Emission inside Annulus 1, modulated by the PSF, creating a weighted ARF

Emission scattered from Annulus 1 into Annulus 2 by the PSF, creating a weighted cross-ARF

May 14, 2024

Systematic uncertainty of point source reconstruction is 3.4% (Creech+ 2024)

Equivalent to ARF produced by nuproducts

Emission inside Annulus 2, modulated by the PSF, creating a weighted ARF

Emission scattered from Annulus 2 into Annulus 1 by the PSF, creating a weighted cross-ARF

Daniel R. Wik

Lopez+ 2024

Cluster Nam	e Redshift	Gain Offset	kT_c	kT_X	kT_N	kT_{Ni}
	\mathbf{Z}	keV	keV	keV	keV	keV
RXC J1504	0.2172	-0.10 ± 0.04	$9.81\substack{+0.80 \\ -0.79}$	$6.40\substack{+0.20\\-0.16}$	$8.55^{+1.09}_{-0.95}$	$5.93\substack{+0.18 \\ -0.33}$
Abell 3571	0.0390	-0.09 ± 0.02	$8.10^{+0.08}_{-0.08}$	$6.36\substack{+0.06 \\ -0.03}$	$7.12^{+0.10}_{-0.20}$	
Abell 3558	0.0484	-0.05 ± 0.03	$7.42^{+0.27}_{-0.28}$	$5.51\substack{+0.08\\-0.08}$	$6.00^{+0.40}_{-0.40}$	$6.23\substack{+0.30 \\ -0.30}$
Abell 1651	0.0850	-0.09 ± 0.04	$7.07^{+0.25}_{-0.25}$	$6.09^{+0.12}_{-0.12}$	$6.73_{-0.14}^{+0.20}$	0.00
Abell 3391	0.0561	-0.10 ± 0.07	$6.62^{+0.22}_{-0.22}$	$5.54_{-0.09}^{+0.13}$	$6.24_{-0.40}^{+0.40}$	
Abell 1650	0.0838	-0.10 ± 0.04	$6.43_{-0.10}^{+0.10}$	$5.14\substack{+0.05\\-0.05}$	$6.55^{+0.20}_{-0.20}$	$5.88\substack{+0.90\\-0.30}$
Abell 3158	0.0592	-0.05 ± 0.05	$6.01^{+0.10}_{-0.10}$	$5.11^{+0.10}_{-0.08}$	$5.79^{+0.22}_{-0.22}$	0.00
Abell 3112	0.0753	-0.10 ± 0.03	$5.45\substack{+0.12\\-0.09}$	$4.00^{+0.06}_{-0.04}$	$5.57^{+0.40}_{040}$	$4.59\substack{+0.20 \\ -0.20}$
Abell 1644	0.0474	-0.06 ± 0.05	$5.31^{+0.14}_{-0.13}$	$4.61^{+0.19}_{-0.17}$	$5.23^{+0.30}_{-0.30}$	$5.24^{+0.20}_{-0.20}$
Abell 496	0.0331	-0.07 ± 0.03	$5.18\substack{+0.07\\-0.07}$	$4.39_{-0.08}^{+0.11}$	$5.40\substack{+0.30\\-0.10}$	$3.82\substack{+0.10\\-0.03}$
		Schellenberger+ 2015				
NuSTAR	May 14, 2024	– Dan	iel R. Wik	– IAC	HEC Parador o	de La Granja

U _____NuSTAR

May 14, 2024

U

Lopez+ 2024 (Chandra/XMM-Newton kTs from Schellenberger+ 2015) Daniel R. Wik IACHEC Parador de La Granja

14

May 14, 2024

U

Daniel R. Wik IACHEC Parador de La Granja

14

CXB Measurement Consistent

CXB Measurement Consistent

CXB Measurement Consistent

May 14, 2024

Daniel R. Wik

NuSTAR U

Daniel R. Wik

NuSTAR U

Daniel R. Wik

Abell 2029, 5th Annulus

Nominal Chandra ARF

A2029 228-342": Nominal ARF Fit

Modified Chandra ARF

A2029 228-342": Modified ARF Fit

Daniel R. Wik

May 14, 2024

Abell 2199, 5th Annulus

Nominal Chandra ARF

A2199 228-342": Nominal ARF Fit

Modified Chandra ARF

A2199 228-342": Modified ARF Fit

Daniel R. Wik

May 14, 2024

In Summary

- NuSTAR kTs are systematically LOWER than Chandra kTs, which physically shouldn't happen
- *NuSTAR* kTs are systematically HIGHER than *XMM-Newton* kTs and comparable to *Chandra* kTs for cooler clusters
- Trend not sensitive to dynamical state, only overall temperature matters
- A correction to *Chandra*'s hard band effective area similar to *XMM-Newton*'s achieves better agreement with *NuSTAR*, although it's not perfect
- The XMM-Newton effective area correction may exacerbate disagreement with NuSTAR, but physical explanation plausible

14 -**BALN NASTAR** 12 -10 -8 -6 -

U _____NuSTAR

May 14, 2024

Daniel R. Wik

Backup Slides

May 14, 2024

Daniel R. Wik

NuSTAR U

May 14, 2024

Daniel R. Wik

RXC-J1504

NuSTAR U

May 14, 2024

Snapshot Spectral Fits

Daniel R. Wik

A3558

Snapshot Spectral Fits

Daniel R. Wik

May 14, 2024

A3391

Snapshot Spectral Fits

A1650

Daniel R. Wik

May 14, 2024

A3158

NuSTAR U

May 14, 2024

Daniel R. Wik

Snapshot Spectral Fits

A3112

Snapshot Spectral Fits

May 14, 2024

Daniel R. Wik

A496

Temperature Maps of A478

U _____NuSTAR

May 14, 2024

Daniel R. Wik

AnGr abund, wabs, no ARF correction

May 14, 2024

Daniel R. Wik

Abund Wilm, before & after ARF correction

May 14, 2024

Daniel R. Wik

Daniel R. Wik

M(

$$\langle r
angle = -rac{kT(r)r}{G\mu m_p} \left[rac{d\ln n_p}{d\ln r} + rac{d\ln T}{d\ln r}
ight] \propto T(r)r$$

Daniel R. Wik

$$\langle r \rangle = -\frac{kT(r)r}{G\mu m_p} \left[\frac{d\ln n_p}{d\ln r} + \frac{d\ln T}{d\ln r} \right] \propto T(r)r$$

IACHEC Parador de La Granja

Daniel R. Wik

Galaxy Clusters: Why Calibration?

Daniel R. Wik

May 14, 2024

Daniel R. Wik IACHEC Parador de La Granja

XMM-Newton Self Consistency

May 14, 2024

IACHEC Parador de La Granja Daniel R. Wik

XMM-Newton Self Consistency

NuSTAR U

May 14, 2024

Daniel R. Wik

