

2024 16th IACHEC

Current Status of Insight-HXMT

Reporter Xiaobo Li

On behalf of HXMT mission Parador de La Granja (Spain) 2024-05-13

Introduction of HXMT

OUT LINE

1.1 Hard X-ray Modulation Telescope (HXMT)

1st X-ray Astronomy Satellite in China

1.2 Hard X-ray Modulation Telescope (HXMT) Payloads

Main properties of HXMT payloads

Characteristic	HE	ME	LE
Energy range (keV)	28-250	10-35	1-10
Energy resolution	18%@60 keV	13.6%@22 keV	1.5%@6.4 keV
Time resolution (us)	2	6.4	10
FOV	$1.1^{\circ} \times 5.7^{\circ}$	$1^{\circ} \times 4^{\circ}$	$1.6^{\circ} \times 6^{\circ}$
	$5.7^{\circ} \times 5.7^{\circ}$	$4^{\circ} \times 4^{\circ}$	$4^{\circ} \times 6^{\circ}$
Detector	Nal(Tl), Csl(Na)	Si-PIN	SCD
Open area (cm ²)	4270	850	300
Operating temperature	$18 \pm 2 ^{\circ}\text{C}$	-40°C~-10°C	-75°C~-40°C

1.

1.3 Core Sciences

Galactic plane scan

Monitor or survey for weak & short transient sources in very wide energy band (1-250 keV)

3.

Pointed observations

High statistics study of bright sources and long-term high cadence monitoring of XRB outbursts.

High energy bursts

GRBs, especially associated with GW, FRB, HEN, etc. Magnetar bursts

5

Proposals and observations

1

3

2

Data and software

Calibration status

Current status

2.1 Proposals and observations

Cycle	Submission Period	Proposals Amount	Observation Amount	Observation Period	ТоО
AO01	2016.8-9	90	517	2017.11-2019.06	39
AO02	2019.1-2	35	349	2019.07-2020.07	26
AO03	2020.4-5	34	329	2020.08-2021.07	16
A004	2021.4-5	33	333	2021.08-2022.08	30
AO05	2022.4-5	43	339	2022.09-2023.08	30
A006	2023.4-6	50	337	2023.09-2024.08	/

Red stars:Pointed observationsBlue lines:Tracks of slewGreen regions:Small area scansYellow belts:All sky survey

- **Data format: FITS** •
- Data release: Pointed Observations •
- **Download: http://archive.hxmt.cn/proposal** •

- Task Style: FTOOLs style
- *Input :* Level 1 data product & CALDB ٠
- **Output :** Response files, background files, event files, spectra, light-curves

Detected Counts Rate

Payloads	Crab (cts/s) (source +b.k)	Background (cts/s)
HE (28-250 keV)	540+530	530 (~1Crab)
ME (10-35 keV)	200+20	20 (~0.1Crab)
LE (1-10 keV)	760+10	10 (~0.01Crab)

As a **collimated telescope**, HXMT has high background:

Crab spectrum observed by HXMT

Li et al. 2023, RDTM Li et al. 2020, JHEAp Liao et al. 2020, JHEAp

All 18 detectors are working

- Energy Scale: keep stable (<1%) after three month in orbit
 - Energy resolution: getting a little better

Effective areas: keep stable

2.3 Calibration---ME

298 SiPINS (17%) turned off

- Energy Scale: keep stable, change is less than 1.5%
- Energy resolution: change less than 3%

Effective areas: keep almost stable

2.3 Calibration---ME

Dead time correction in Power Density Spectrum

- The Fourier-amplitude-difference (FAD) method could well recover the intrinsic shape of the observed PDS in the case that the PDS is from two identical detectors. *Bachetti & Huppenkothen (2018)*
- We apply FAD on ME, by splitting the 9 FPGA modules into two groups. The results indicate that the FAD technique suits the case when two group of detectors are not largely different.
- The recovered PDS enhances the significance of the previously known QPO signal.

obsid	FAD corrected	dead time distorted '
P010132801001	5.86σ	5.2σ
P010132801002	5.28σ	4.2σ
^a cited from Jia	et al. (2020)	

 \bullet

The background model is estimated and verified by blank sky observations and blind detectors.

The background models of each payload are reliable

Liao J.Y., et al. 2023, RDTM

1. *Insight*-HXMT has worked smoothly for about 7 years, and all the instruments of HE work well. ME and LE deactivated some detectors but also satisfy the scientific requirements.

2. Six cycles of AO have been collected and the scientific observation targets of the six years have been successfully scheduled. AO07 is ongoing.

3. HXMTSOFT, CALDB and background model are continuously updated. We provide the FAD correction tool implemented in HXMTSOFT for users in the future to better analyse QPO signals.

