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Pileup
Pileup occurs when multiple photons strike the same detector region during a
single frame

The detector cannot resolve them as separate events

Their combined charge is interpreted as a single event:
▶ Total energy is roughly the sum of the individual photon energies
▶ Resulting charge cloud may be irregular → bad grade

These effects distort the observed spectrum and reduce usable counts

Figure: Pileup distorts the observed image, producing a “hole” in bright regions where
events are lost due to bad grades
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Why Model Pileup Probabilistically?

In high-energy regimes, photon coincidence distorts observed energy channels
and grades

Traditional corrections (Ballet, 1999, 2003; Davis, 2001) are deterministic and
can fail when...

▶ Pileup is frequent
▶ The source spectrum is complex
▶

We propose a fully generative statistical model for pileup, which enables
principled inference
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What Actually Happens During Pileup?

Multiple photons in the same frame → Overlapping charge clouds → Sum of
energies is recorded as a single event with pulse height approximately equal to
the sum of energies

Detector logic applies:
▶ Charge spreading → Multiple pixel signal
▶ The center of the pixel island is picked
▶ Grading → Determines the measure of spatial distribution of charge

Observed data: energy channel + event grade (and pixel island location and
detector time)
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Ingredients

Within each time frame and detector region (i.e., pixel island) r, we observe...

A channel Cr ∈ {1, . . . , 1024}: an observed measure of the photon’s (or piled
photons’) energy with measurement error quantified by a redistribution matrix
function

A grade Gr ∈ {good, bad} based on the electron charge cloud pattern
generated by the photon(s)

▶ Events with pileup are usually assigned bad grades due to irregular charge cloud
shapes

▶ Events with bad grades are typically discarded in practice — but in our model,
they are critical for inference!

We do not observe...

Pr, the number of photons actually emitted by the source (and then piled up)

Er,1, . . . , Er,Pr the energies of those individual photons

Hr,1, . . . ,Hr,Pr the would-be grades of those individual photons
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A Graphical Model

Pr

Cr

Er,1 Er,2 . . . Er,Pr−1 Er,Pr Er,Pr+1 . . . Er,pm

Hr,1 Hr,2 . . . Hr,Pr−1 Hr,Pr
Hr,Pr+1 . . . Hr,pm

Gr

Figure: Graphical model representing the conditional independence structure of the
observed and latent variables within a single region r; shaded nodes represent latent
variables
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Statistical Inference

We are mainly interested in the vector of parameters θ corresponding to the
source spectrum

We aim to perform frequentist statistical inference by maximizing the
likelihood function

L(θ) =

R∏
r=1

nr∏
i=1

Pθ(Gr = gr,i, Cr = cr,i)

where (gr,1, cr,1), . . . , (gr,nr , cr,nr ) are independent grade-channel observations
in region r

For this, we need a model that allows us to compute (or estimate) the joint
distribution Pθ(Gr = g, Cr = c)
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Key Modelling Idea

Model the number of piled-up photons Pr in region r in one time frame as
having a Poisson distribution

Within a given region r and time frame, let (g, c) be the observed
grade-channel pair

We marginalize over all possible photon configurations and energies:

Pθ(Gr = g, Cr = c)

=

∞∑
p=1

Pθ(G = g, C = c | Pr = p) · Pθ(Pr = p)

=

∞∑
p=1

∫
Pθ(Gr = g, Cr = c | Pr = p,E1:p = e1:p) · qp,θ(e1:p) de1:p · Pθ(Pr = p)

▶ ...where qp,θ(e1:p) =
∏p

k=1 qθ(ek) is the joint density of the vector of p
energies E1:p = (E1, . . . , Ep)
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Complications....

The distribution of Cr depends on E1:p through the total energy
∑p

k=1 Ek,
which follows a p-fold convolution of qθ

The distribution of the observed grade-channel pair depends on photon-level
grades, which are unobserved (so we must marginalize over them too):

Pθ(Gr = g, Cr = c | Pr = p,E1:p = e1:p)

= Pθ(Cr = c | E1:p = e1:p) ·
∑

h1:p∈{good,bad}p

Pθ(Gr = g | H1:p = h1:p)

· Pθ(H1:p = h1:p)

The detector has a maximum threshold νmax: if
∑p

k=1 ek > νmax, then the
event is unrecorded (we must account for this too)

We handle all of these!
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Statistical Computation
The likelihood function can be written down, but it is analytically intractable
and impossible to compute exactly (mainly due to integrals over convolutions)

Instead, we approximate it by Monte Carlo

If E
(1)
p , . . . , E

(m)
p

iid∼ qθ for each k ≥ 1 and m is large, then∫
Pθ(Gr = g, Cr = c | Pr = p,E1:p = e1:p) · qp,θ(e1:p) de1:p

≈ 1

m

m∑
j=1

Pθ(Gr = g, Cr = c | Pr = p,E(j))

So

L(θ) =

R∏
r=1

nr∏
i=1

Pθ(Gr = gr,i, Cr = cr,i)

≈
nr∏
i=1

∞∑
p=1

 1

m

m∑
j=1

Pθ(Gr = gr,i, Cr = cr,i | Pr = p,E(j))

 · Pθ(Pr = p)
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Uncertainty Quantification
In many situations, one can obtain confidence intervals for θ̂MLE by inspecting
the Hessian of log(L(θ)) at θ̂MLE

However, our log-likelihood surfaces are locally “wobbly”
▶ We suspect this is due to the discrete nature of observed grades/channels and

(maybe) Monte Carlo noise

Instead, we approximate the log-likelihood surface by dropping points around
the MLE and fitting a quadratic surface using linear regression

▶ This (usually) works well!
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Simulation Study: Setup

Write λ(θ) for the total expected photon count per unit frame time

We simulate data under four scenarios to assess parameter recovery:

Setting A: Low pileup, no emission line
λ(θ) ≈ 2.1, power law spectrum

Setting B: High pileup, no emission line
λ(θ) ≈ 4.5, power law spectrum

Setting C: Moderate pileup, mixed spectrum
λ(θ) ≈ 3.3, power law + emission line spectrum

Setting D: High pileup, mixed spectrum
λ(θ) ≈ 5.6, power law + emission line spectrum

These simulations use a fixed RMF matrix and PSF; we fit the model via
maximum likelihood using our Monte Carlo likelihood approximation
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Simulation Study: Parameter Recovery (n = 500)

Each simulation involves estimating θ = (α, θ) or θ = (α, θ, ϕ), with

α: Grade migration parameter which controls probability that piled photons
yield a good grade

θ: Power law slope

ϕ: Relative weight of the power law component vs. the emission line

Setting α α̂± SE θ θ̂ ± SE ϕ ϕ̂± SE

A 0.70 0.71 ± 0.048 0.70 0.67 ± 0.005 1.00 (fixed)
B 0.70 0.70 ± 0.025 1.50 1.63 ± 0.013 1.00 (fixed)
C 0.70 0.77 ± 0.030 0.70 0.68 ± 0.006 0.70 0.69 ± 0.004
D 0.70 0.68 ± 0.022 1.50 1.63 ± 0.017 0.30 0.28 ± 0.008

Estimated parameters recover true values well across all conditions
▶ Slight upward bias in θ̂ under high pileup (Settings B and D), as expected
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Future Directions

Although we deal with frequentist inference, our work extends easily to the
Bayesian regime

▶ Use the same model and use our Monte Carlo based evaluation of the likelihood

The modular nature of our model allows us to easily add a refined sub-model
for the probability of grade migration

Incorporation of additional instrumental effects

Accounting for background contamination

Etc.
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Thank you!
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