

Cross-Calibration Comparisons using Galaxy Cluster Emission from NuSTAR, Chandra, XMM-Newton, Suzaku, and XRISM

Daniel R. Wik (University of Utah)

Based mostly on work from **Cicely Potter** (Utah) and **Fiona Lopez**

(Texas A&M)

NuSTAR

May 14, 2025

CHANDRA X-RAY OBSERVATORY

Daniel R. Wik

Galaxy Clusters: Temperature Discrepancy

May 14, 2025

Schellenberger+ 2015

Daniel R. Wik

Crucial for Cluster Cosmology

- Discrepancy worst at high kTs
- At low *kT*s, *NuSTAR* can make precise measurements
 - Exponential turnover stronger
 - But emission fainter
- Galactic foreground absorption (often) negligible
- Background low and stable
- Unresolved lines have less impact on the continuum (below bandpass)
- In-orbit verification of effective area (Madsen+ 22)

 (cm^2) Effective Area

NuSTAR

May 14, 2025

NuSTAR's Advantages

Daniel R. Wik

IACHEC Osaka

NuSTAR's Disadvantages

- Large PSF (~1' HPD)
 - Fit spectra with cross-ARFs
 - Mitigates crosstalk but precision lost
- Hard-to-model effects
 - Scattered light (no pre-collimators)
 - Stray light (open optical path)
 - Mostly rare/avoidable
- Low spectral resolution

Systematic uncertainty of point source reconstruction is 3.4% (Creech+ 2024)

Intrinsic Emission

Scattered Emission

Daniel R. Wik

Global kT Measurements (Chandra vs. NuSTAR)

A2146

A2163 May 14, 2025

Wallbank+ 22

A665

Daniel R. Wik

 $\mathbf{A754}$ IACHEC Osaka

Global kT Measurements (Chandra vs. NuSTAR)

\mathcal{T}_{i}	(0.6 - 9)		kT_C	kT_N	
k	æV		keV	keV	
8	± 0.14		8.9 ± 0.66	$6.72 \pm$	
6	$\pm 0.70^{\dagger}$		12.23 ± 1.15	9.72 ± 0	
1	± 0.15		7.38 ± 0.41	6.43 ± 0	
)	± 0.36		7.15 ± 2.55	4.87 ± 0	
6	± 0.23		8.29 ± 0.62	7.36 ± 0	
9	± 0.17		9.25 ± 0.47	8.57 ± 0	
57	2 ± 0.36		14.57 ± 0.96	$12.85 \pm$	
'1	± 0.46		15.80 ± 1.09	$12.57 \pm$	
	or 16	4	<i>KKI</i> IS 6 lower		
	NuS7		4R shou	ld be	
Diased to migner $K I S = > MuSt De$					
r	ence		s in calib	ration	
-					

Wallbank+ 22

Daniel R. Wik

NuSTAR - Chandra Comparison

C-stat/dof: 3006/1567

May 14, 2025

Daniel R. Wik

Cross-calibration with Relaxed Clusters

Dr. Cicely Potter (Defended a week ago)

		kT	
	Cluster	(keV)	z
NuSTAR Large	Abell 2029	8.5	0.077
Program	Abell 478	7.3	0.088
(>100 ks each)	Abell 1795	6.1	0.062
	Abell 2199	4.4	0.030

Reanalysis of Chandra/XMM-Newton data in exact same regions

May 14, 2025

Fiona Lopez (REU student, incoming NMSU grad)

	Cluster	kT_C (keV)	ΔkT_X (keV)	$\frac{T_C - T_X}{T_X}$	$\Delta kT_N \ ({ m keV})$
NuSTAR	RXC J1504	9.8 ± 0.8	0.2	0.53	0.8
	Abell 3571	8.1 ± 0.1	0.1	0.27	0.1
Cluster	Abell 3558	7.4 ± 0.3	0.1	0.35	0.2
Snapshot	Abell 1651	7.1 ± 0.3	0.1	0.16	0.1
	Abell 3391	6.6 ± 0.2	0.1	0.19	0.2
C Program	Abell 1650	6.4 ± 0.1	0.1	0.25	0.2
(20 ks each)	Abell 3158	6.0 ± 0.1	0.1	0.18	0.1
	Abell 3112	5.5 ± 0.1	0.1	0.36	0.2
	Abell 1644	5.3 ± 0.1	0.2	0.15	0.2
	Abell 496	5.2 ± 0.1	0.1	0.18	0.2
	<u>Abell 3562</u>	-5.0 ± 0.3	0.1	0.19	0.1

Extract same regions as in Schellenberger+ 2015 (r < 3.5', excising cores)

Daniel R. Wik

IACHEC Osaka

U _____NuSTAR

May 14, 2025

IACHEC Osaka

Daniel R. Wik

Deep Sample: Temperature Profiles

Abell 478

May 14, 2025

Abell 2029

Daniel R. Wik

Deep Sample: Temperature Profiles

Abell 1795

Daniel R. Wik

IACHEC Osaka

NuSTAR U

May 14, 2025

Lopez+ 2025 (Chandra/XMM-Newton kTs from Schellenberger+ 2015)

Daniel R. Wik IACHEC Osaka

Lopez+ 2025 (Chandra/XMM-Newton kTs from Schellenberger+ 2015)

May 14, 2025

Daniel R. Wik

May 14, 2025

Lopez+ 2025 submitted

XRISM Observations of the Coma Cluster

Comparison using Resolve FOVs

12 **Resolve Line Ratio** Resolve (2--9 keV) Chandra (0.8--9 keV) 11 -NuSTAR (3--25 keV) Xtend (0.8--12 keV) XMM (6--7.5 keV, MOS+PN) Temperature (keV) 8 0 0 XMM (0.5--10 keV, MOS+PN) Suzaku (0.5--10 keV) 9 -Southern Pointing Central Pointing 8 7 -6 Same as Region 5 in

Resolve FOV: Native Bands

the following slides

May 14, 2025

Potter+ in prep

Daniel R. Wik

Comparison using Resolve FOVs

12 **Resolve Line Ratio** Resolve (2--9 keV) Chandra (0.8--9 keV) 11 -NuSTAR (3--25 keV) Xtend (0.8--12 keV) Temperature (keV) 8 6 10 XMM (6--7.5 keV, MOS+PN) XMM (0.5--10 keV, MOS+PN) Suzaku (0.5--10 keV) 9 -Southern Pointing Central Pointing 7 -6 Same as Region 5 in

Resolve FOV: Native Bands

the following slides

May 14, 2025

Potter+ in prep

Daniel R. Wik

Measurements in 9 Grid Regions

NuSTAR U

May 14, 2025

Potter+ in prep

Daniel R. Wik

Measurements in 9 Grid Regions

NuSTAR U

May 14, 2025

Potter+ in prep

Daniel R. Wik

Measurements in 9 Grid Regions

NuSTAR Temperature Map

U

Potter+ in prep

Daniel R. Wik

Daniel R. Wik

Daniel R. Wik

Future Work (funded, for now...)

- A correction to *Chandra*'s hard band effective area similar to *XMM*-*Newton*'s achieves better agreement with *NuSTAR*, although it's not perfect
- The XMM-Newton effective area correction tends to exacerbate disagreement with NuSTAR; temperatures pushed even lower
- Need to do spatially resolved comparisons across the archives, find patterns to track down potential origins of discrepancies

Cluster Bullet ZWCL 1856d A2146 SPT CLJ203 Ophiuchus Abell 478 Abell 523 Abell 3266 Abell 665 CL 0217p70 RX J1347d5n Abell 2256 MACS J0717 CIZA 0107d7 Abell 1795 Abell 2199 Abell 2319 Abell 3395

	t_{Nu}	t_{Ch}	$\mid t_{XMM} \mid$		t_{Nu}	t_{Ch}	$\mid t_{XM}$
	(ks)	(ks)	(ks)	Cluster	(ks)	(ks)	(k
	294	584	47	Abell 754	124	190	3
18	268	43	13	Abell 2255	123	45	
	265	2386	-	Abell S753	121	87	1
1m4037	238	259	30	Abell 2163	117	90	1
	232	283	230	Abell 2029	102	184	19
	222	153	130	Coma	60	486	2
	209	30	230	ZWCL 1856d8p6616	29	43	
	208	35	187	RXC J1504	24	164	3
	198	161	266	Abell 3112	22	152	2
	177	25	-	Abell 3158	22	62	
n1145	172	331	38	Abell 1644S	21	71	
	166	218	296	Abell 3558	21	15	
d5p3745	163	247	195	Abell 496	20	105	2
p5408	159	165	-	Abell 3391	20	68	
	154	3552	137	Abell 1651	20	10	
	138	160	180	Abell 3571	18	34	
	134	91	92	Abell 1650	18	252	
	129	120	30				
	-						-

Daniel R. Wik

IACHEC Osaka

Future Work (funded, for now...)

- A correction to *Chandra*'s hard band effective area similar to *XMM*-*Newton*'s achieves better agreement with *NuSTAR*, although it's not perfect
- The XMM-Newton effective area correction tends to exacerbate disagreement with NuSTAR; temperatures pushed even lower
- Need to do spatially resolved comparisons across the archives, find patterns to track down potential origins of discrepancies

Cluster Bullet ZWCL 18560 A2146 SPT CLJ203 Ophiuchus Abell 478 Abell 523 Abell 3266 Abell 665 CL 0217p70 RX J1347d5n Abell 2256 **MACS J0717** CIZA 0107d7 Abell 1795 Abell 2199 Abell 2319 Abell 3395

	t_{Nu}	t_{Ch}	$\mid t_{XMM} \mid$		t_{Nu}	t_{Ch}	$\mid t_{XM}$
	(ks)	(ks)	(ks)	Cluster	(ks)	(ks)	(k
	294	584	47	Abell 754	124	190	3
18	268	43	13	Abell 2255	123	45	
	265	2386	-	Abell S753	121	87	
1m4037	238	259	30	Abell 2163	117	90	
	232	283	230	Abell 2029	102	184	
	222	153	130	Coma	60	486	
	209	30	230	ZWCL 1856d8p6616	29	43	
	208	35	187	RXC J1504	24	164	3
	198	161	266	Abell 3112	22	152	2
	177	25	-	Abell 3158	22	62	
m1145	172	331	38	Abell 1644S	21	71	
	166	218	296	Abell 3558	21	15	
'd5p3745	163	247	195	Abell 496	20	105	2
7p5408	159	165	-	Abell 3391	20	68	
	154	3552	137	Abell 1651	20	10	
	138	160	180	Abell 3571	18	34	
	134	91	92	Abell 1650	18	252	.
	129	120	30				

Daniel R. Wik

IACHEC Osaka

Backup Slides

May 14, 2025

Daniel R. Wik

Abell 2029, 5th Annulus

Nominal Chandra ARF

A2029 228-342": Nominal ARF Fit

May 14, 2025

Modified Chandra ARF

A2029 228-342": Modified ARF Fit

Daniel R. Wik

Abell 2199, 5th Annulus

Nominal Chandra ARF

A2199 228-342": Nominal ARF Fit

May 14, 2025

Modified Chandra ARF

A2199 228-342": Modified ARF Fit

Daniel R. Wik

Daniel R. Wik

U

Cluster Name	$\mathbf{Redshift}$	Gain Offset	kT_c	kT_X	kT_N	kT_{Ni}
	\mathbf{Z}	keV	keV	keV	keV	keV
RXC J1504	0.2172	-0.10 ± 0.04	$9.81\substack{+0.80 \\ -0.79}$	$6.40\substack{+0.20 \\ -0.16}$	$8.55\substack{+1.09 \\ -0.95}$	$5.93\substack{+0.18 \\ -0.33}$
Abell 3571	0.0390	-0.09 ± 0.02	$8.10\substack{+0.08 \\ -0.08}$	$6.36\substack{+0.06 \\ -0.03}$	$7.12^{+0.10}_{-0.20}$	
Abell 3558	0.0484	-0.05 ± 0.03	$7.42\substack{+0.27 \\ -0.28}$	$5.51\substack{+0.08 \\ -0.08}$	$6.00\substack{+0.40\\-0.40}$	$6.23\substack{+0.30 \\ -0.30}$
Abell 1651	0.0850	-0.09 ± 0.04	$7.07\substack{+0.25 \\ -0.25}$	$6.09\substack{+0.12 \\ -0.12}$	$6.73\substack{+0.20 \\ -0.14}$	
Abell 3391	0.0561	-0.10 ± 0.07	$6.62\substack{+0.22 \\ -0.22}$	$5.54\substack{+0.13 \\ -0.09}$	$6.24\substack{+0.40 \\ -0.40}$	
Abell 1650	0.0838	-0.10 ± 0.04	$6.43\substack{+0.10 \\ -0.10}$	$5.14\substack{+0.05 \\ -0.05}$	$6.55\substack{+0.20 \\ -0.20}$	$5.88\substack{+0.90\\-0.30}$
Abell 3158	0.0592	-0.05 ± 0.05	$6.01\substack{+0.10 \\ -0.10}$	$5.11\substack{+0.10 \\ -0.08}$	$5.79\substack{+0.22 \\ -0.22}$	
Abell 3112	0.0753	-0.10 ± 0.03	$5.45\substack{+0.12 \\ -0.09}$	$4.00\substack{+0.06 \\ -0.04}$	$5.57\substack{+0.40 \\040}$	$4.59\substack{+0.20 \\ -0.20}$
Abell 1644	0.0474	-0.06 ± 0.05	$5.31\substack{+0.14 \\ -0.13}$	$4.61\substack{+0.19 \\ -0.17}$	$5.23\substack{+0.30 \\ -0.30}$	$5.24\substack{+0.20 \\ -0.20}$
Abell 496	0.0331	-0.07 ± 0.03	$5.18\substack{+0.07 \\ -0.07}$	$4.39\substack{+0.11 \\ -0.08}$	$5.40\substack{+0.30 \\ -0.10}$	$3.82\substack{+0.10 \\ -0.03}$
				Ť		
			Schellenbe	erger+ 2015		
NuSTAR	May 14,	2025 —	Daniel R. V	Vik —	IACHEC O	saka

Lopez+ 2025 submitted

Daniel R. Wik

RXC-J1504

May 14, 2025

Snapshot Spectral Fits

A3571

Daniel R. Wik

A3558

May 14, 2025

Snapshot Spectral Fits

A1651

Daniel R. Wik

A3391

May 14, 2025

Snapshot Spectral Fits

A1650

Daniel R. Wik

A3158

May 14, 2025

Snapshot Spectral Fits

A3112

Daniel R. Wik

Snapshot Spectral Fits

May 14, 2025

Daniel R. Wik

NuSTAR U

NuSTAR - XMM-Newton Comparison

A478: XMM-Newton Fitting

Daniel R. Wik

