The Calibration Status of the Reflection Grating Spectrometer onboard XMM-Newton

IACHEC Meeting #17

Osaka, May 12-15 2025

Celia Sanchez-Fernandez XMM-Newton Science Operations Centre

Oh behalf of the XMM-SOC & SRON teams esp. Rosario Gonzalez-Riestra

Outline

- Introduction to RGS
- Operations and Instrument Status
 - System Peak
 - Charge Transfer Efficiency
 - Bad Surface
 - Hot spots and hot columns

- Calibration and Monitoring

- Wavelength Scale
- Effective Area
- Flux monitoring

The Reflection Grating Spectrometer (RGS)

- 2 Reflection Grating Arrays behind 2 of the XMM mirrors
- RGAs continuously in the light-path, non switchable
- High sensitivity and resolution in [0.35-2.5]keV ([5-35]Å)
- FOV: ± 2.4 arcmin in cross-dispersion
- Line rich region: K-shell transitions of low-Z abundant elements (C, N, O, Ne, Si) and L-shell Fe transitions
- Camera: 9 back illuminated CCDs, readout in frame store mode
- 2 CCD readout channels non-operable (CCD#4 in RGS2, CCD#7 in RGS1)
- •Since 2007, single node readout in RGS2

- Operations running smoothly
- Same operational configuration
- No instrumental anomalies
- No unexpected degradation of the instrumental parameters

Instrument diagnostics: System Peak

Instrument diagnostics: Charge Trasfer Efficiency (CTE)

Ability of the device to transfer charge from one potential well to the next.

Monitoring using internal calibration sources

Instrument diagnostics: Charge Trasfer Efficiency (CTE)

Ability of the device to transfer charge from one potential well to the next.

Monitoring using internal calibration sources

Instrument diagnostics: Bad surface

Local defects and damage by cosmic rays in the depleted silicon material can give rise to hot pixels and columns.

IACHEC Meeting #17

Instrument diagnostics: Hot Columns

¢ 7

Local defects and damage by cosmic rays in the depleted silicon material can give rise to hot pixels and columns.

STABLE → NO NEED FOR CCF UPDATE

RGS Diagnostic Trend Analysis Reports

IACHEC Meeting #17

Instrument diagnostics: Hot Columns

Columns found hot in more than 25% of the observations

Columns found hot in more than 95% of the observations

RGS Diagnostic Trend Analysis Reports

Instrument diagnostics: Hot Spots in CCD#1 of RGS1

RGS Diagnostic Trend Analysis Reports

- Following revolution 786 RGS1 CCD1 developed two hot spots.
- They show up symmetrically in RGS CCD1 only.
- Symmetry does not suggest radiation damage or aging of detector bench.
- Unknown origin: mechanical stress in detector?
- Initial growth during the first 2-3 years, stable at the moment.

Instrument diagnostics: Hot Spots in CCD#1 of RGS1

Calibration and Monitoring

- Wavelength Scale
- Effective Area
- Flux monitoring

Calibration and Monitoring: Wavelength Scale

Relation between incoming photon energy and the most likely location where it will end up on the detector

Calibration and Monitoring: Wavelength Scale

Relation between incoming photon energy and the most likely location where it will end up on the detector

Calibration and Monitoring: Wavelength Scale

Relation between incoming photon energy and the most likely location where it will end up on the detector

Calibration: Effective Area

Three time-dependent effective area corrections:

Contamination correction,

Default in processing, rgsproc/rgsrmfgen parameter dyneffareacorr=yes

• Time-dependent Small scale Effective Area correction

Default in processing, rgsproc/rgsrmfgen parameter witheffectivaeracorrection=yes

Rectification Factors

Correction with respect to EPIC-pn. Non-default option. can be applied with rgsproc/rgsrmfgen withrectification=yes

Corrections regularly monitored & updated.

Calibration: Effective Area: Contamination

C₈H₈ contamination layer building up slowly (2nm/yr)

Thickness of contaminant proportional to flux @35Å

Contamination estimated from observations of RX J1856-3754 & Vela Pulsar

Calibration: Effective Area: Contamination

C₈H₈ contamination layer building up slowly (2nm/yr)

Thickness of contaminant proportional to flux @35Å

Contamination estimated from observations of RX J1856-3754 & Vela Pulsar

Since ~2015, extra contamination source, not consistent with C_8H_8

Nature of new contaminant unknown

Empirically corrected in "Rectification Correction"

Calibration: Effective Area: Small Scale Correction

Cross-calibration RGS1-RGS2

Implemented in April 2023.

Time and wavelength-dependent tabulations in the EFFAREACORR CCF for the calculation of RGS response matrices.

IACHEC Meeting #17

Calibration: Effective Area: Rectification Factors

67

RGS - EPICpn redundancy in 0.35-2 keV range helps to improve calibration

Energy (keV)

Calibration: Effective Area: Rectification Factors

67

RGS - EPICpn redundancy in 0.35-2 keV range helps to improve calibration

- Ratio of RGS / EPIC-pn fluxes in steps of 1Å
 Updated regularly to account for improvements in EPIC-pn and RGS calibrations, and with optimised EPIC-pn extraction regions.
 Data used: PKS2155 and 3C 273, EPIC-pn in Small Window Mode
- Re-derived in September 2023 following the update of the Effective Area correction in April 2023

[Release Note: CAL-SRN-401]

Update in progress based on data taken until January 2025

Calibration: Effective Area: Rectification Factors

Cross-validation: Rect. Factors applied to ISN RXJ1856-3754

RGS/EPIC-pn Flux Ratio, no rect

RGS/EPIC-pn Flux Ratio, with rect correction

Flux derived from XSPEC fit to an absorbed BB. Fixed N_H=3.95 x 10¹⁹ cm^{-2;} (Grandis et al. 2022)

Flux derived from XSPEC fit to an absorbed BB. Fixed N_H=3.95 x 10¹⁹ cm^{-2;} (Grandis et al. 2022)

IACHEC Meeting #17

Spectral parameters from XSPEC fit to an absorbed BB. Fixed N_H=3.95 x 10¹⁹ cm^{-2;} (Grandis et al. 2022)

BB TEMPERATURE

BB NORMALISATION

Spectral parameters from XSPEC fit to an absorbed BB. Fixed N_H=3.95 x 10¹⁹ cm^{-2;} (Grandis et al. 2022)

BB TEMPERATURE

BB NORMALISATION

RGS2 3.1 +/- 0.4 3.1 +/- 0.1

Summary

Operations and Instrument Status

- Operations running smoothly
- No changes in hot columns / hot spots
- No unexpected behaviour in the instrumental performance, except for decrease in CTE
 -> CTI UPDATE IN PROGRESS

Wavelength scale

- Wavelength scale stable
- No significative trend with time
- No degradation in spectral resolution

Effective Area

- Variations in Effective Area continuously monitored
- Empirical corrections to take into account the observed change in Effective Area:
 - Effective area correction
 - Rectification correction -> EFFAREACORR UPDATE IN PROGRESS

EPIC and RGS calibration targets

Target	ks	Visits/yr	Main purpose	
1ES0102-72	35	2	EPIC effective area	
N132D	45	1	EPIC redistribution	
Crab	2x5	2	EPIC Timing	
Vela SNR	60	1	EPIC spectral resolution and contamination	
Zeta Puppis	45	0.5	EPIC Redistribution	
Zeta Puppis	60	1	EPIC/RGS long wavelength Effective area	Apr 2025
RXJ1856-3754	70	2	EPIC/RGS response and contamination	Mar 2025
HR 1099	50	0.5	RGS CTI and Gain Confirmation of the RGS wavelength scale	2026
AB Dor	100	1	Confirmation of the RGS wavelength scale	Oct 2024
Vela Pulsar	100	1	RGS Long wavelength response	May 2025
Mkn 421 in MPM	5x12	2	RGS Effective area	May 2025
Mkn 421 offset in XDSP	2x10	0.5	RGS CTI and Gain [offsets modified to ± 1.5 arcmin)	2026
1ES1553+113	30	1	XCAL Effective area	Feb 2025
3C 273	60	1	XCAL Effective area	Jan 2025
PKS 2155-304	50	1	RGS Effective area	Nov 2024
				- / / \ `

IACHEC Meeting #17

http://xmmweb.esac.esa.int/docs/documents/CAL-PL-0101-2-0.pdf